Abstract: A process for producing lightweight materials for a battery comprises lightweight polymer substrate coated with dispersions of nano particles, conductive matrixes and active material.
Abstract: A sensor system that detects a current representative of a compound in a liquid mixture features a multi or three electrode strip adapted for releasable attachment to signal readout circuitry. The strip comprises an elongated support which is preferably flat adapted for releasable attachment to the readout circuitry; a first conductor and a second and a third conductor each extend along the support and comprise means for connection to the circuitry. The circuit is formed with single-walled or multi walled nanotubes conductive traces and may be formed from multiple layers or dispersions containing, carbon nanotubes, carbon nanotubes/antimony tin oxide, carbon nanotubes/platinum, or carbon nanotubes/silver or carbon nanotubes/silver-chloride.
Abstract: A method for producing a circuit assembly having a non-conductive substrate upon which printed conductors may be easily and selectively interconnected to another circuit assembly device, and/or apparatus.
Abstract: An electrically conductive coating is disclosed. According to one embodiment of the present invention, the coating includes a plurality of single-wall or multi-walled Carbon nanotubes having a diameter less than 20 nanometers. The disclosed coating demonstrates excellent conductivity and smooth surface morphology. Methods of preparing the coating as well as methods of its use are also disclosed herein.
Abstract: A sensor system that detects a current representative of a compound in a liquid mixture features a multi or three electrode strip adapted for releasable attachment to signal readout circuitry. The strip comprises an elongated support which is preferably flat adapted for releasable attachment to the readout circuitry; a first conductor and a second and a third conductor each extend along the support and comprise means for connection to the circuitry. The circuit is formed with single-walled or multi walled nanotubes conductive traces and may be formed from multiple layers or dispersions containing, carbon nanotubes, carbon nanotubes/antimony tin oxide, carbon nanotubes/platinum, or carbon nanotubes/silver or carbon nanotubes/silver-chloride.
Abstract: An electrochemical test device for determining the presence or concentration of an analyte in an aqueous fluid sample comprises a substrate comprising a non-conductive material; a working electrode comprising a conductive film formed at least with carbon nanotubes, the working electrode having a first electrode area, a first lead and a first contact pad; a counter electrode comprising a conductive film formed at least with carbon nanotubes; a reagent capable of reacting with the analyte to produce a measurable change in potential which can be correlated to the presence or concentration of the analyte in the fluid sample, the reagent overlaying at least a portion of the first electrode area of the working electrode; and a reference electrode comprising a conductive coating formed at least with carbon nanotubes, the reference electrode having a third electrode area at least a portion of which is overlaid with a reference material.