Abstract: Techniques and devices including a biocompatible antibacterial film are provided. An example method for depositing a biocompatible antibacterial film using physical vapor deposition (PVD) includes providing a substrate in a PVD processing chamber, forming a deposited film by co-depositing a first material and a second material onto the substrate from a vapor plume, wherein at least the first material is biocompatible and at least the second material is antibacterial, and nano-texturing the deposited film to produce nano-scale surface asperities that provide at least one of inhibition of bacterial growth, promotion of osseointegration, promotion of epithelial attachment, or promotion of endothelial attachment.
Abstract: Techniques for creating a mesoporous surface for enhanced bone integration are provided. An example of a method for generating a mesoporous surface on a substrate includes depositing a layer of titanium on an area of the substrate to generate a nano-textured surface, and anodizing the layer of titanium on the area of the substrate to generate the mesoporous surface. The method may also include incorporating pharmaceutical, biological, or molecular additives into the mesoporous surface intended to further enhance performance of the substrate via enhanced osseoconduction, osseoinduction, or antimicrobial/anti-infective properties.
Type:
Grant
Filed:
October 23, 2017
Date of Patent:
March 17, 2020
Assignee:
N2 BIOMEDICAL LLC
Inventors:
Nader Montazemezam Kalkhoran, Eric Tobin, Jason Burns
Abstract: Techniques and methods for utilizing ion implantation to modify dental archwires are provided. An example of a method of ion implanting a wire target includes providing the wire target in an ion implant system, implanting ions into the wire target such that a color of the wire target material after the implanting exhibits a changed appearance from the color of the wire target material before the implanting, and removing the wire target from the ion implant system. An example of a copper-aluminum-nickel (CuAlNi) wire includes an ion implanted atomic species wherein a color of an implanted CuAlNi wire is white, off-white and/or silver and further wherein the implanted CuAlNi wire exhibits mechanical properties of an unimplanted CuAlNi wire.