Abstract: An electronic amplifier delivers to a load an output signal related to an input, typically with increased power. As the power output, volume, or gain of the amplifier is changed, so may the spectral characteristics of the signal. In order to maintain the desired spectral or tonal character of the output signal over the dynamic range of output power, biasing of the amplifier must be adjusted. Particular ratios of drive and bias currents and/or voltages for different implementations of amplifier technologies should be relatively constant to produce substantially invariant input-output spectral relationships from low power output through high power output settings. Several techniques are presented which provide these relationship in amplifiers.
Abstract: An electronic amplifier delivers to a load an output signal related to an input, typically with increased power. As the power output, volume, or gain of the amplifier is changed, so may the spectral characteristics of the signal. In order to maintain the desired spectral or tonal character of the output signal over the dynamic range of output power, biasing of the amplifier must be adjusted. Particular ratios of drive and bias currents and/or voltages for different implementations of amplifier technologies should be relatively constant to produce substantially invariant input-output spectral relationships from low power output through high power output settings. Several techniques are presented which provide these relationship in amplifiers.