Abstract: Incorporates at least one thermal switch (5) in series with the heating resistor (4) of the module located on the frame (1) of said resistors (4) that cuts off current to the resistor (4) when the heater power control circuit fails. The thermal switch (5) can be between the heating resistor (4) and the earth connection of the support (6), or between the heating resistor (4) and the power supply (3) of the module. The module allows a closed-loop control using as variable the temperature of one of the resistors (4), whose resistivity can change with the temperature. Similarly, the electronic control circuit can also be integrated in the heater frame (1), allowing a closed-loop control of the dissipated power using as control variable the temperature of the frame (1).
Abstract: Incorporates at least one thermal switch (5) in series with the heating resistor (4) of the module located on the frame (1) of said resistors (4) that cuts off current to the resistor (4) when the heater power control circuit fails. The thermal switch (5) can be between the heating resistor (4) and the earth connection of the support (6), or between the heating resistor (4) and the power supply (3) of the module. The module allows a closed-loop control using as variable the temperature of one of the resistors (4), whose resistivity can change with the temperature. Similarly, the electronic control circuit can also be integrated in the heater frame (1), allowing a closed-loop control of the dissipated power using as control variable the temperature of the frame (1).
Abstract: The system is meant to heat the intake air in internal combustion Diesel engines and is based on the use of a resistor having two segments (1) and (1?) joined to each other on one end (2), the segments (1) and (1?) being made of different metal alloys to form a thermocouple that allows using the module determined by this resistor with a control circuit to automatically regulate the temperature of the intake air, as well as to know the flow rate entering each cylinder from a measurement of the amount of heat supplied to the air flow entering each cylinder of the engine. The system will be disposed in correspondence with the intake duct (4) of the corresponding engine cylinder (3), where the union (2) of the segments (1) and (1?) which form the resistor must be located at the center of said duct (4), where the air flow is greatest.
Abstract: Disclosed is an electronic pulse width modulation (PWM) regulator of a low frequency rectangular wave signal serving to control the speed of a direct current motor. The invention aims at simplifying the design of said regulator by eliminating the classical inductive element so that the motor continuously operates as a filter of the output signal provided by the switching component. The invention also aims at preventing noises caused by switching. To this end, subsonic switching frequencies of less than 50 Hz are used.
Abstract: Electrical resistances to carry out heating of air necessary for the combustion process of an engine, each of said resistance being in continuous tape form, with a pronounced coiled trajectory so that the resistance is distributed uniformly in an orifice for the passage of air established in a support and has its larger faces located in imaginary planes parallel to the axis of said orifice so that the electrical resistance presents its front rim to the passage of the air with a minimum loss of head, while presenting a wide contact surface to the air. The resistance is fastened to the support in arched recesses defined in diametrically opposed areas of said support, with the interposition of respective ceramic insulators being connected to ground by one of its ends and by its other end to the electricity supply cable.
Type:
Grant
Filed:
December 2, 2003
Date of Patent:
September 14, 2004
Assignee:
Nagares, S.A., Universidad Politecnica de Valencia
Abstract: The heating glow plug controller for diesel engines is capable of controlling the activation of the glow plugs and consists of a set of electronic relays which in addition can also detect failures due to open circuit or short-circuit, and then acting in under 1 millisecond since electronic relays are semiconductors and no electromechanical elements are involved. There is one electronic relay per glow plug and each one may consist of a separate semiconductor wafer or alternatively, several relays may be integrated in a single semiconductor wafer. The set of relays is in turn connected to controlling or calculating module, and may even be included in the same block as the calculator module or in a different one connected by connectors and leads to the calculator block.