Patents Assigned to Namiki Precision Jewel Co., Ltd.
  • Patent number: 10475580
    Abstract: There are provided an oxide dielectric having excellent properties and a solid state electronic device (e.g., a capacitor, a semiconductor device, or a small electromechanical system) having such an oxide dielectric. An oxide layer 30 includes an oxide dielectric (possibly including inevitable impurities) including bismuth (Bi) and niobium (Nb) and having a first crystal phase of a pyrochlore-type crystal structure and a second crystal phase of a ?-BiNbO4-type crystal structure. The oxide layer 30 has a controlled content of the first crystal phase and a controlled content of the second crystal phase, in which the first crystal phase has a dielectric constant that decreases with increasing temperature of the oxide layer 30 in a temperature range of 25° C. or more and 120° C. or less, and the second crystal phase has a dielectric constant that increases with increasing temperature of the oxide layer 30 in the temperature range.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: November 12, 2019
    Assignees: JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, ADAMANT NAMIKI PRECISION JEWEL CO., LTD.
    Inventors: Tatsuya Shimoda, Satoshi Inoue, Tomoki Ariga
  • Patent number: 10473856
    Abstract: Provided is an optical branching/coupling device in which optical transmission quality is improved by preventing a reduction in optical transmission quality, the reduction being due, for example, to an optical waveguide core affecting a light of another optical waveguide core in the vicinity of a joining section of the two optical waveguide cores. This optical branching/coupling device includes: a first optical waveguide that is provided extending from one end side to other end side; a second optical waveguide that is provided extending on a separate route from the one end side to the other end side, the other end side of the second optical waveguide being joined to the other end side of the first optical waveguide; and a cladding layer that covers the periphery of the first optical waveguide and the second optical waveguide, wherein the first and second optical waveguides comprise a cured product of a photocuring resin.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: November 12, 2019
    Assignees: ADAMANT NAMIKI PRECISION JEWEL CO., LTD., DENSO CORPORATION
    Inventors: Hiroyuki Fujiwara, Masaru Sasaki, Kaoru Torii, Ren Watanabe, Tadahisa Iikubo, Mitsuhiko Mizuno
  • Publication number: 20190335859
    Abstract: Provided is a winding device configured so that the entirety of the device can be thinned and looseness of an elongated member can be reduced. In a winding device 1A, a flat motor 2 is used as a motor, and a spool 3 and a magical planetary gear mechanism 4 are formed flat along an extending XY plane of the flat motor 2. Thus, the entirety of the device can be configured flat, and can be thinned. Moreover, the magical planetary gear mechanism 4 prevents rotation of the spool 3 by external force, and therefore, looseness of the elongated member can be reduced.
    Type: Application
    Filed: December 1, 2017
    Publication date: November 7, 2019
    Applicant: ADAMANT NAMIKI PRECISION JEWEL CO., LTD.
    Inventor: Yasuyuki KOBAYASHI
  • Patent number: 10422621
    Abstract: Provided is an optical measurement device configured so that a high-accuracy three-dimensional image can be obtained. An emission angle of a ray of light is changed in such a manner that the rotation frequencies of two motors configured to rotatably drive a first optical path changing unit and a second optical path changing unit is controlled. The ray of light is emitted to a front three-dimensional region, and reflected light is obtained. Then, calculation is made by a computer, and in this manner, three-dimensional data on a measurement target object is obtained. The amount (vibration amount) of axial backlash or play of a rotary mechanism, such as a motor shaft, along which the ray of light is emitted is measured in real time, and such a backlash or play amount is subtracted from a three-dimensional image obtained by the computer. Consequently, a high-accuracy three-dimensional image is obtained.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: September 24, 2019
    Assignee: Adamant Namiki Precision Jewel Co., Ltd.
    Inventors: Hiroshi Yamazaki, Eri Fukushima, Takuya Tateyama, Takafumi Asada
  • Patent number: 10401157
    Abstract: An optical inner surface measurement device is provided; which includes a motor; a rotary optical fiber configured to be rotated by the motor; a fixed optical fiber configured not to rotate relative to the rotary optical fiber; and a runout detection sensor configured to measure a runout amount of the rotary optical fiber, wherein an optical path conversion device is arranged at a tip end of the rotary optical fiber, at a back of the motor, both end surfaces of the rotary optical fiber and the fixed optical fiber face each other with a minute clearance, and reflected light, which is captured by the optical path conversion device, from a measurement target object inner surface is guided to a measurement machine body by way of the rotary optical fiber and the fixed optical fiber and is analyzed by a computer to produce inner surface measurement data, and the inner surface measurement data is corrected based on the runout amount detected by the runout detection sensor.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: September 3, 2019
    Assignee: Adamant Namiki Precision Jewel Co., Ltd.
    Inventors: Hiroshi Yamazaki, Takuya Tateyama, Kenji Narita, Takafumi Asada
  • Patent number: 10353155
    Abstract: Provided is a multi-fiber optical connector which can be easily assembled by having a simple structure and provides high workability at the time of connection. Since a plate-shaped guide 2 adapted to move a fiber is provided on an end surface and a gap x is provided on a rear surface of the plate-shaped guide 2, achieved is a structure in which each of fibers 5 is mutually moved in an optical axis direction along a penetration hole h provided at the plate-shaped guide 2 at the time of connecting connectors. Consequently, the respective fibers 5 which can be elastically connected independently from each other can be collectively connected at the time of connecting the connectors, and furthermore, positioning accuracy between the respective fibers 5 can be improved when the connector is used as a multi-fiber optical connector 1.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: July 16, 2019
    Assignee: ADAMANT NAMIKI PRECISION JEWEL CO., LTD.
    Inventors: Masahiro Abumi, Kazuaki Ikegai, Nobuhiko Oda, Takehiro Hayashi
  • Publication number: 20190137263
    Abstract: An optical inner surface measurement device is provided; which includes a motor; a rotary optical fiber configured to be rotated by the motor; a fixed optical fiber configured not to rotate relative to the rotary optical fiber; and a runout detection sensor configured to measure a runout amount of the rotary optical fiber, wherein an optical path conversion device is arranged at a tip end of the rotary optical fiber, at a back of the motor, both end surfaces of the rotary optical fiber and the fixed optical fiber face each other with a minute clearance, and reflected light, which is captured by the optical path conversion device, from a measurement target object inner surface is guided to a measurement machine body by way of the rotary optical fiber and the fixed optical fiber and is analyzed by a computer to produce inner surface measurement data, and the inner surface measurement data is corrected based on the runout amount detected by the runout detection sensor.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Applicant: ADAMANT NAMIKI PRECISION JEWEL CO., LTD.
    Inventors: Hiroshi YAMAZAKI, Takuya TATEYAMA, Kenji NARITA, Takafumi ASADA
  • Patent number: 10246794
    Abstract: The crystal plane in the interior of the diamond substrate has a curvature higher than 0 km?1 and equal to or lower than 1500 km?1 by preparing a base substrate, forming a plurality of pillar-shaped diamonds formed of diamond single crystals on one side of the base substrate, causing diamond single crystals to grow from tips of each pillar-shaped diamond, coalescing each of the diamond single crystals grown from the tips of each pillar-shaped diamond to form a diamond substrate layer, separating the diamond substrate layer from the base substrate, and manufacturing the diamond substrate from the diamond substrate layer.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: April 2, 2019
    Assignee: ADAMANT NAMIKI PRECISION JEWEL CO., LTD.
    Inventors: Hideo Aida, Koji Koyama, Kenjiro Ikejiri, Seongwoo Kim
  • Patent number: 10167861
    Abstract: The present invention is provided to suppress occurrence of free flow. An infusion pump includes: a sliding clamp closing and releasing an infusion tube; a pump body including a tube attachment portion to which the infusion tube is to be attached detachably and forcibly transferring liquid in the infusion tube; and a door pivotably supported by the pump body so that the tube attachment portion is openable and closable by the door. The pump body includes: a clamp attachment portion into which the sliding clamp having the infusion tube set therein is to be inserted and set; and a release operator being operated in the clamp attachment portion to transfer the sliding clamp from a close mode to a release mode, the release operator being configured to be locked, in response to opening movement of the door, so that the release operator is inoperable for releasing, and to be unlocked in response to closing movement of the door.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: January 1, 2019
    Assignees: Namiki Precision Singapore Pte. Ltd., Adamant Namiki Precision Jewel Co., Ltd.
    Inventors: Hisashi Ikeda, Masahiro Koyama, Katsuya Kataoka, Jun Araaki
  • Patent number: 10132000
    Abstract: A diamond substrate is formed of diamond single crystals by preparing a base substrate; forming plural pillar-shaped diamonds formed of diamond single crystals on one side of the base substrate; causing a diamond single crystal to grow from a tip of each pillar-shaped diamond and coalescing the diamond single crystals growing from the tips of the pillar-shaped diamonds to form a diamond substrate layer; separating the diamond substrate layer from the base substrate; and manufacturing a diamond substrate from the diamond substrate layer, a shape in an in-plane direction of the diamond substrate is a circular shape or a circular shape having an orientation flat plane formed therein and has a diameter of two inches or more.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: November 20, 2018
    Assignee: ADAMANT NAMIKI PRECISION JEWEL CO., LTD.
    Inventors: Hideo Aida, Koji Koyama, Kenjiro Ikejiri, Seongwoo Kim
  • Patent number: 10066931
    Abstract: An optical inner-surface measurement device includes: an optical fiber included inside a tube, the optical fiber being configured to be inserted into a hole of an inspection object; at least two optical-path converting elements disposed in a forward-end of the optical fiber; and a motor for rotationally driving at least one of the at least two optical-path converting elements. The at least two optical-path converting elements emit a light beam, guided thereto through the optical fiber, to an inner peripheral surface of the hole of the inspection object three-dimensionally in a circumferential direction and an axial direction of the hole.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: September 4, 2018
    Assignee: Adamant Namiki Precision Jewel Co., Ltd.
    Inventors: Hiroshi Yamazaki, Eri Fukushima, Kazumi Yanagiura, Takafumi Asada
  • Publication number: 20180143000
    Abstract: Provided is an optical measurement device configured so that a high-accuracy three-dimensional image can be obtained. An emission angle of a ray of light is changed in such a manner that the rotation frequencies of two motors configured to rotatably drive a first optical path changing unit and a second optical path changing unit is controlled. The ray of light is emitted to a front three-dimensional region, and reflected light is obtained. Then, calculation is made by a computer, and in this manner, three-dimensional data on a measurement target object is obtained. The amount (vibration amount) of axial backlash or play of a rotary mechanism, such as a motor shaft, along which the ray of light is emitted is measured in real time, and such a backlash or play amount is subtracted from a three-dimensional image obtained by the computer. Consequently, a high-accuracy three-dimensional image is obtained.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 24, 2018
    Applicant: Adamant Namiki Precision Jewel Co., Ltd.
    Inventors: Hiroshi YAMAZAKI, Eri FUKUSHIMA, Takuya TATEYAMA, Takafumi ASADA
  • Patent number: 7790300
    Abstract: An R—Fe—B based thin film magnet including an R—Fe—B based alloy which contains 28 to 45 percent by mass of R element (where R represents at least one type of rare-earth lanthanide elements) and which is physically formed into a film, wherein the R—Fe—B based alloy has a composite texture composed of R2Fe14B crystals having a crystal grain diameter of 0.5 to 30 ?m and R-element-rich grain boundary phases present at boundaries between the crystals. The magnetization characteristics of the thin film magnet are improved. The R—Fe—B based thin film magnet can be prepared by heating to 700° C. to 1,200° C. during physical film formation or/and the following heat treatment, so as to grow crystal grains and form R-element-rich grain boundary phases.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: September 7, 2010
    Assignees: Japan Science and Technology Agency, Hitachi Metals, Ltd., Namiki Precision Jewel Co., Ltd.
    Inventors: Shunji Suzuki, Kenichi Machida, Eiji Sakaguchi, Kazuya Nakamura
  • Publication number: 20070199623
    Abstract: An R—Fe—B based thin film magnet including an R—Fe—B based alloy which contains 28 to 45 percent by mass of R element (where R represents at least one type of rare-earth lanthanide elements) and which is physically formed into a film, wherein the R—Fe—B based alloy has a composite texture composed of R2Fe14B crystals having a crystal grain diameter of 0.5 to 30 ?m and R-element-rich grain boundary phases present at boundaries between the crystals. The magnetization characteristics of the thin film magnet are improved. The R—Fe—B based thin film magnet can be prepared by heating to 700° C. to 1,200° C. during physical film formation or/and the following heat treatment, so as to grow crystal grains and form R-element-rich grain boundary phases.
    Type: Application
    Filed: March 23, 2005
    Publication date: August 30, 2007
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, NEOMAX Co., Ltd., NAMIKI PRECISION JEWEL Co., Ltd.
    Inventors: Shunji Suzuki, Kenichi Machida, Eiji Sakaguchi, Kazuya Nakamura
  • Patent number: 7176671
    Abstract: A current measuring apparatus comprises a current detection unit 10 and a photoelectric converter 20. The current detection unit 10 comprises an optical fiber sensor 11 extended or looped around a conductor 30. A reflective film 12 is attached to one end of the sensor 11 so that light can be reflected by the end of the sensor. The current detection unit 10 further comprises a first Faraday element 13, a light-transmitting birefringent member 14, a first optical fiber 15, a second optical fiber 16 and a lens 17. The Faraday element 13 rotates a plane of polarization of the incident light through about 22.5°. The birefringent member 14 functions to separate the light emitted from the sensor 11 into an ordinary ray L1 and an extraordinary ray L2 that are orthogonal to each other, and to transmit linearly polarized light L0 emitted from a light source. The lens 17 is provided between the element 13 and the birefringent member 14.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: February 13, 2007
    Assignees: The Tokoyo Electric Power Company, Inc, Namiki Precision Jewel Co., Ltd.
    Inventors: Kiyoshi Kurosawa, Yoshiharu Hiroki, Yoshihiro Konno, Masaru Sasaki
  • Patent number: 6917270
    Abstract: An improved electromagnetic actuator having a coil (10) on which a current is impressed, a magnet (20) that forms a magnetic circuit across a magnetic gap (G) with a magnet yoke (21), and having a diaphragm (11) that vibrates when a high-frequency current is impressed, and a vibration plate (22) that vibrates when a low-frequency current is impressed, with these parts enclosed within a basket (3) and the coil (10) placed within the magnetic gap (G). As one invention, a radial array of magnets, a vibration plate with a double-suspension structure, and a bottom plate of magnetic shielding material are placed in the basket to suppress the leakage of magnetic flux.
    Type: Grant
    Filed: April 10, 1998
    Date of Patent: July 12, 2005
    Assignee: Namiki Precision Jewel Co., Ltd.
    Inventors: Tsuneo Kyouno, Teruo Yoshinari, Minoru Ueda
  • Patent number: 6873069
    Abstract: A very thin fan motor with an attached heat sink that has high heat radiation and air cooling effects in a small, flat, thin package, that has a simple and easily assembled overall structure as a fan motor, and that has superior cooling efficiency.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: March 29, 2005
    Assignee: Namiki Precision Jewel Co., Ltd.
    Inventors: Kinya Odagiri, Kouji Oki, Shingo Suzuki
  • Patent number: 5952745
    Abstract: A coreless motor device having a rotor comprised of a cylindrical coil, a coil support, a rotary shaft inserted and stabilized in the center of the coil support, and a commutator installed either on the coil support or rotary shaft is disclosed. A cylindrical field magnet is positioned on the inside of the cylindrical coil, and one end of the cylindrical field magnet is affixed at a bottom of a cylindrical housing that surrounds the outer circumference of the cylindrical coil. The rotary shaft of the motor is supported by a thrust bearing at the end of the cylindrical field magnet opposite the end that is affixed at the bottom of the cylindrical housing, and it is also supported by a multiple number of radial bearings installed at intervals on the upper part of the cylindrical housing.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: September 14, 1999
    Assignee: Namiki Precision Jewel Co., Ltd.
    Inventor: Hisafumi Yasuda
  • Patent number: D509793
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: September 20, 2005
    Assignee: Namiki Precision Jewel Co., Ltd.
    Inventors: Toshio Suzuki, Hidehiro Uchiumi
  • Patent number: D534121
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: December 26, 2006
    Assignee: Namiki Precision Jewel Co. Ltd.
    Inventors: Kazuo Morita, Hidehiro Uchiumi