Patents Assigned to Nano and Advanced Materials Institute Limited
  • Publication number: 20120247203
    Abstract: A rapid response relative humidity sensor based on nano-structured aluminum oxide thin film is disclosed. The main body of the sensor is an anodic aluminum oxide thin film of about 2-20 ?m thick formed from an Al substrate which serves as one electrode. A porous metal layer of about 20-200 nm thick is formed over the anodic aluminum oxide thin film and functions as a second electrode. The alumina thin film contains nano-sized channels of about 10-100 nm in diameter, serving as a capacitive relative humidity sensor having high sensitivity and short response time. Thermal annealing at elevated temperature improves the linearity of the capacitance versus humidity curve, giving a full range humidity sensing range. Hysteresis and degradation are negligible for the humidity sensors.
    Type: Application
    Filed: December 22, 2010
    Publication date: October 4, 2012
    Applicant: NANO AND ADVANCED MATERIALS INSTITUTE LIMITED
    Inventors: Chun Zhang, Jianying Miao, Ning Wang
  • Publication number: 20120223875
    Abstract: A high-resolution, Active Matrix (AM) programmed monolithic Light Emitting Diode (LED) micro-array is fabricated using flip-chip technology. The fabrication process includes fabrications of an LED micro-array and an AM panel, and combining the resulting LED micro-array and AM panel using the flip-chip technology. The LED micro-array is grown and fabricated on a sapphire substrate and the AM panel can be fabricated using PMOS process, NMOS process, or CMOS process. LED pixels in a same row share a common N-bus line that is connected to the ground of AM panel while p-electrodes of the LED pixels are electrically separated such that each p-electrode is independently connected to an output of drive circuits mounted on the AM panel. The LED micro-array is flip-chip bonded to the AM panel so that the AM panel controls the LED pixels individually and the LED pixels exhibit excellent emission uniformity.
    Type: Application
    Filed: May 8, 2012
    Publication date: September 6, 2012
    Applicant: NANO AND ADVANCED MATERIALS INSTITUTE LIMITED
    Inventors: Kei May LAU, Zhaojun LIU
  • Publication number: 20110309378
    Abstract: A high-resolution, Active Matrix (AM) programmed monolithic Light Emitting Diode (LED) micro-array is fabricated using flip-chip technology. The fabrication process includes fabrications of an LED micro-array and an AM panel, and combining the resulting LED micro-array and AM panel using the flip-chip technology. The LED micro-array is grown and fabricated on a sapphire substrate and the AM panel can be fabricated using CMOS process. LED pixels in a same row share a common N-bus line that is connected to the ground of AM panel while p-electrodes of the LED pixels are electrically separated such that each p-electrode is independently connected to an output of drive circuits mounted on the AM panel. The LED micro-array is flip-chip bonded to the AM panel so that the AM panel controls the LED pixels individually and the LED pixels exhibit excellent emission uniformity. According to this constitution, incompatibility between the LED process and the CMOS process can be eliminated.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 22, 2011
    Applicant: Nano and Advanced Materials Institute Limited
    Inventors: Kei May Lau, Chi Wing Keung, Zhaojun Liu