Patents Assigned to Nanoco Technologies Ltd.
  • Publication number: 20130314698
    Abstract: By forming nanoparticles from gas-phase precursors within cracks or defects in a gas-barrier film, crack-width may be determined from the diameter of the nanoparticles formed within. The optical absorption and emission wavelengths of a quantum dot are governed by the particle size. For a particular material, the absorption and/or emission wavelengths may therefore be correlated to the particle size (as determined from techniques such as transmission electron microscopy, TEM). Thus, fluorescence measurement techniques and/or confocal microscopy may be used to determine the size of quantum dots formed within a gas-barrier film, allowing both the size and nature of a defect to be determined. The method may be used to assess the potential effects of defects on the integrity of the gas-barrier film.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 28, 2013
    Applicant: Nanoco Technologies, Ltd.
    Inventor: Nanoco Technologies, Ltd.
  • Patent number: 8563348
    Abstract: A continuous film of desired electrical characteristics is obtained by successively printing and annealing two or more dispersions of prefabricated nanoparticles.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: October 22, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: James Harris, Nigel Pickett
  • Patent number: 8524365
    Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 3, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: Paul O'Brien, Nigel Pickett
  • Publication number: 20130189803
    Abstract: A molded nanoparticle phosphor for light emitting applications is fabricated by converting a suspension of nanoparticles in a matrix material precursor into a molded nanoparticle phosphor. The matrix material can be any material in which the nanoparticles are dispersible and which is moldable. The molded nanoparticle phosphor can be formed from the matrix material precursor/nanoparticle suspension using any molding technique, such as polymerization molding, contact molding, extrusion molding, injection molding, for example. Once molded, the molded nanoparticle phosphor can be coated with a gas barrier material, for example, a polymer, metal oxide, metal nitride or a glass. The barrier-coated molded nanoparticle phosphor can be utilized in a light-emitting device, such as an LED. For example, the phosphor can be incorporated into the packaging of a standard solid state LED and used to down-convert a portion of the emission of the solid state LED emitter.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 25, 2013
    Applicant: NANOCO TECHNOLOGIES, LTD.
    Inventor: NANOCO TECHNOLOGIES, LTD.
  • Publication number: 20130190493
    Abstract: Surface-modified nanoparticles are produced by associating ligand interactive agents with the surface of a nanoparticle. The ligand interactive agents are bound to surface modifying ligands that are tailored to impart particular solubility and/or compatibility properties. The ligand interactive agents are crosslinked via a linking/crosslinking agent, such as hexamethoxymethylmelamine or a derivative thereof. The linking/crosslinking agent may provide a binding site for binding the surface modifying ligands to the ligand interactive agents.
    Type: Application
    Filed: December 21, 2012
    Publication date: July 25, 2013
    Applicant: NANOCO TECHNOLOGIES, LTD.
    Inventor: Nanoco Technologies, Ltd.
  • Publication number: 20130153012
    Abstract: Embodiments of the present invention involve photovoltaic (PV) cells comprising a semiconducting nanorod-nanocrystal-polymer hybrid layer, as well as methods for fabricating the same. In PV cells according to this invention, the nanocrystals may serve both as the light-absorbing material and as the heterojunctions at which excited electron-hole pairs split.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: Nanoco Technologies, Ltd.
    Inventor: Nanoco Technologies, Ltd.
  • Publication number: 20130140600
    Abstract: In various embodiments, the present invention provides a light emitting device cap configured for location on a light emitting device comprising or consisting essentially of a primary light source. The cap defines a well region within which is received a population of semiconductor nanoparticles such that the semiconductor nanoparticles are in optical communication with the primary light source of the light emitting device when the cap is located on the light emitting device. There is further provided a light emitting device comprising or consisting essentially of a primary light source and such a cap, as well as methods for fabricating such a cap and device.
    Type: Application
    Filed: May 31, 2012
    Publication date: June 6, 2013
    Applicant: Nanoco Technologies, Ltd.
    Inventors: James Harris, Imad Naasani, Nigel Pickett
  • Publication number: 20130105839
    Abstract: A formulation incorporates nanoparticles, particularly quantum dot (QD) nanoparticles, into an optically clear medium (resin) to be used as a phosphor material in lighting and display applications, and as a down converting phosphor material in LEDs (light emitting diodes). The resin is compatible with QDs to allow high performance and stability of QD-based LEDs, lighting and display applications.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 2, 2013
    Applicant: Nanoco Technologies, Ltd.
    Inventors: Imad Naasani, Hao Pang, Siobhan S. Daniels, Emma Fitzgerald, Mark McCairn
  • Publication number: 20130075692
    Abstract: A light emitting layer including a plurality of light emitting particles embedded within a host matrix material. Each of said light emitting particles includes a population of semiconductor nanoparticles embedded within a polymeric encapsulation medium. A method of fabricating a light emitting layer comprising a plurality of light emitting particles embedded within a host matrix material, each of said light emitting particles comprising a population of semiconductor nanoparticles embedded within a polymeric encapsulation medium. The method comprises providing a dispersion containing said light emitting particles, depositing said dispersion to form a film, and processing said film to produce said light emitting layer.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 28, 2013
    Applicant: NANOCO TECHNOLOGIES LTD.
    Inventor: NANOCO TECHNOLOGIES LTD.
  • Patent number: 8394976
    Abstract: Embodiments of the invention relate to a process for the production of surface functionalised nanoparticles, such as semiconductor quantum dot nanoparticles incorporating surface-bound functional groups suitable for enabling the dots to be incorporated into silicone polymers.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 12, 2013
    Assignee: Nanoco Technologies, Ltd.
    Inventors: Nigel Pickett, Mark C. McCairn, Steven M. Daniels, Imrana Mushtaq, Paul Glarvey
  • Patent number: 8394663
    Abstract: Embodiments of the present invention involve photovoltaic (PV) cells comprising a semiconducting nanorod-nanocrystal-polymer hybrid layer, as well as methods for fabricating the same. In PV cells according to this invention, the nanocrystals may serve both as the light-absorbing material and as the heterojunctions at which excited electron-hole pairs split.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: March 12, 2013
    Assignee: Nanoco Technologies, Ltd.
    Inventors: James Harris, Nigel Pickett
  • Patent number: 8368048
    Abstract: One embodiment of the invention provides a nanostructure layer, comprising: a first population of semiconductor nanocrystals forming electron transport conduits; a second population of semiconductor nanocrystals forming hole transport conduits; and a third population of semiconductor nanocrystals capable of at least one of the following: absorbing light or emitting light.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: February 5, 2013
    Assignee: Nanoco Technologies, Ltd.
    Inventors: Michael LoCascio, San Ming Yang
  • Patent number: 8337720
    Abstract: Embodiments of the invention involve semiconductor nanoparticle capping ligands, their production and use. Ligands may have the formula with m ranging from approximately 8 to approximately 45. An embodiment provides a method of forming a compound of the formula including the steps of providing a first starting material comprising poly(ethyleneglycol) and reacting the first starting material with a second starting material comprising a functional group for chelating to the surface of a nanoparticle to thereby form the compound.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: December 25, 2012
    Assignee: Nanoco Technologies, Ltd.
    Inventors: Mark C. McCairn, Steven M. Daniels, Siobhan Cummins, Nigel Pickett
  • Patent number: 8168457
    Abstract: A shaped article comprising a plurality of semiconductor nanocrystals. Devices incorporating shaped articles are also provided. Methods of manufacturing shaped articles by various molding processes are also provided.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: May 1, 2012
    Assignee: Nanoco Technologies, Ltd.
    Inventor: Jennifer Z. Gilles
  • Patent number: 8062703
    Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: November 22, 2011
    Assignee: Nanoco Technologies Ltd.
    Inventors: Paul O'Brien, Nigel Pickett