Patents Assigned to NANOFLUOR GmbH
-
Patent number: 10556215Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium alkoxide precursor in a non-aqueous solvent and adding 1.85 to 2.05 molar equivalents of non-aqueous hydrofluoric acid, characterized in that the reaction proceeds in the presence of a second magnesium fluoride precursor selected from the group of salts of strong, volatile acids, such as a chloride, bromide, iodide, nitrate or triflate of magnesium, or of a catalytic amount of a strong, volatile acid; and/or an additive non-magnesium fluoride precursor selected from the group of salts of strong, volatile acids, such as a chloride, bromide, iodide, nitrate or triflate of lithium, antimony, tin calcium, strontium, barium, aluminium, silicium, zirconium, titanium or zinc. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: GrantFiled: June 18, 2017Date of Patent: February 11, 2020Assignee: NANOFLUOR GMBHInventor: Erhard Kemnitz
-
Patent number: 10301476Abstract: The invention relates to a method for obtaining a calcium fluoride (CaF2) sol solution, comprising the steps of providing a calcium precursor in a first volume in a non-aqueous solvent, and adding, in a second volume, 1.85 to 2.05 molar equivalents of anhydrous hydrogen fluoride (nHF) per mole calcium precursor to said first volume, and/or a magnesium additive is added before or after said fluorination with hydrogen fluoride with additional 1.85 to 2.05 molar equivalents of anhydrous hydrogen fluoride (nHF) per mole magnesium additive. Additionally or alternatively at least one metal additive precursor is added before or after the fluorination with hydrogen fluoride wherein an additional amount of hydrogen fluoride (nadHF) is present in the fluorination step. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: GrantFiled: June 21, 2013Date of Patent: May 28, 2019Assignee: NANOFLUOR GMBHInventor: Erhard Kemnitz
-
Patent number: 10144833Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium alkoxide precursor in a non-aqueous solvent and adding 1.85 to 2.05 molar equivalents of non-aqueous hydrofluoric acid to said magnesium precursor, characterized in that the reaction proceeds in the presence of carbon dioxide. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: GrantFiled: March 15, 2017Date of Patent: December 4, 2018Assignee: NANOFLUOR GMBHInventor: Erhard Kemnitz
-
Patent number: 10081004Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium alkoxide precursor in a non-aqueous solvent and adding 1.85 to 2.05 molar equivalents of non-aqueous hydrofluoric acid, characterized in that the reaction proceeds in the presence of a second magnesium fluoride precursor selected from the group of salts of strong, volatile acids, such as a chloride, bromide, iodide, nitrate or triflate of magnesium, or of a catalytic amount of a strong, volatile acid; and/or an additive non-magnesium fluoride precursor selected from the group of salts of strong, volatile acids, such as a chloride, bromide, iodide, nitrate or triflate of lithium, antimony, tin calcium, strontium, barium, aluminum, silicon, zirconium, titanium or zinc. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: GrantFiled: September 18, 2013Date of Patent: September 25, 2018Assignee: NANOFLUOR GMBHInventor: Erhard Kemnitz
-
Publication number: 20170282143Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium alkoxide precursor in a non-aqueous solvent and adding 1.85 to 2.05 molar equivalents of non-aqueous hydrofluoric acid, characterized in that the reaction proceeds in the presence of a second magnesium fluoride precursor selected from the group of salts of strong, volatile acids, such as a chloride, bromide, iodide, nitrate or triflate of magnesium, or of a catalytic amount of a strong, volatile acid; and/or an additive non-magnesium fluoride precursor selected from the group of salts of strong, volatile acids, such as a chloride, bromide, iodide, nitrate or triflate of lithium, antimony, tin calcium, strontium, barium, aluminium, silicium, zirconium, titanium or zinc. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: ApplicationFiled: June 18, 2017Publication date: October 5, 2017Applicant: NANOFLUOR GMBHInventor: Erhard KEMNITZ
-
Publication number: 20170183505Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium alkoxide precursor in a non-aqueous solvent and adding 1.85 to 2.05 molar equivalents of non-aqueous hydrofluoric acid to said magnesium precursor, characterized in that the reaction proceeds in the presence of carbon dioxide. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: ApplicationFiled: March 15, 2017Publication date: June 29, 2017Applicant: NANOFLUOR GMBHInventor: Erhard KEMNITZ
-
Patent number: 9605160Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium alkoxide precursor in a non-aqueous solvent and adding 1.85 to 2.05 molar equivalents of non-aqueous hydrofluoric acid to said magnesium precursor, characterized in that the reaction proceeds in the presence of carbon dioxide. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: GrantFiled: September 18, 2013Date of Patent: March 28, 2017Assignee: NANOFLUOR GMBHInventor: Erhard Kemnitz
-
Publication number: 20150361268Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium precursor in a first volume in a non-aqueous solvent, and adding, in a second volume, 1.85 to 2.05 molar equivalents of anhydrous hydrogen fluoride (HF) per mole calcium precursor to said first volume, and adding a metal additive before, during or after step b), wherein said metal additive is calcium, in form of a calcium precursor, wherein the amount of said calcium additive, in relation to the amount of said magnesium precursor is 1:100 to 1:1, as measured in molar equivalents of said calcium additive to said magnesium precursor, and wherein additionally 1.85 to 2.05 molar equivalents of anhydrous hydrogen fluoride (nHFc) per mole calcium additive is present in said second volume.Type: ApplicationFiled: December 30, 2013Publication date: December 17, 2015Applicant: NANOFLUOR GMBHInventor: Erhard KEMNITZ
-
Publication number: 20150322269Abstract: The invention relates to a method for obtaining a calcium fluoride (CaF2) sol solution, comprising the steps of providing a calcium precursor in a first volume in a non-aqueous solvent, and adding, in a second volume, 1.85 to 2.05 molar equivalents of anhydrous hydrogen fluoride (nHF) per mole calcium precursor to said first volume, and/or a magnesium additive is added before or after said fluorination with hydrogen fluoride with additional 1.85 to 2.05 molar equivalents of anhydrous hydrogen fluoride (nHF) per mole magnesium additive. Additionally or alternatively at least one metal additive precursor is added before or after the fluorination with hydrogen fluoride wherein an additional amount of hydrogen fluoride (nadHF) is present in the fluorination step. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: ApplicationFiled: June 21, 2013Publication date: November 12, 2015Applicant: NANOFLUOR GmbHInventor: Erhard KEMNITZ
-
Publication number: 20150232670Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium alkoxide precursor in a non-aqueous solvent and adding 1.85 to 2.05 molar equivalents of non-aqueous hydrofluoric acid to said magnesium precursor, characterized in that the reaction proceeds in the presence of carbon dioxide. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: ApplicationFiled: September 18, 2013Publication date: August 20, 2015Applicant: NANOFLUOR GMBHInventor: Erhard Kemnitz
-
Publication number: 20150231587Abstract: The invention relates to a method for obtaining a magnesium fluoride (MgF2) sol solution, comprising the steps of providing a magnesium alkoxide precursor in a non-aqueous solvent and adding 1.85 to 2.05 molar equivalents of non-aqueous hydrofluoric acid, characterized in that the reaction proceeds in the presence of a second magnesium fluoride precursor selected from the group of salts of strong, volatile acids, such as a chloride, bromide, iodide, nitrate or triflate of magnesium, or of a catalytic amount of a strong, volatile acid; and/or an additive non-magnesium fluoride precursor selected from the group of salts of strong, volatile acids, such as a chloride, bromide, iodide, nitrate or triflate of lithium, antimony, tin calcium, strontium, barium, aluminium, silicium, zirconium, titanium or zinc. The invention further relates to sol solutions, method of applying the sol solutions of the invention to surfaces as a coating, and to antireflective coatings obtained thereby.Type: ApplicationFiled: September 18, 2013Publication date: August 20, 2015Applicant: NANOFLUOR GmbHInventor: Erhard Kemnitz