Patents Assigned to Nanoprecision Products, Inc.
  • Patent number: 9213148
    Abstract: A hermetic optical fiber alignment assembly, including a first ferrule portion having a first surface provided with a plurality of grooves receiving the end sections of optical fibers, wherein the grooves define the location and orientation of the end sections with respect to the first ferrule portion, and a second ferrule portion having a second surface facing the first surface of the first ferrule, wherein the first ferrule portion is attached to the second ferrule portion with the first surface against the second surface, wherein a cavity is defined between the first ferrule portion and the second ferrule portion, wherein the cavity is wider than the grooves, and wherein a suspended section of each optical fiber is suspended in the cavity, and wherein the cavity is sealed with a sealant. The sealant extends around the suspended sections of the optical fibers within the cavity.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: December 15, 2015
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Robert Ryan Vallance, Michael K. Barnoski
  • Patent number: 9091833
    Abstract: A cable retention structure defining a castellated fiber cable clamping surface. The castellated surface has a series of alternating small and large cavities distributed along the axial direction. The small cavities are sized such that when the castellated surface is pressed against the buffer jacket exterior of the fiber cable, the small cavities will be able to clamp the fiber cable jacket within its full dimensional tolerance range. The large cavities are sized to provide sufficient clearance to accommodate the relatively soft material of the cable jacket which cannot be accommodated by the small cavities. The cable jacket is securely held by the retention structure to prevent slipping. Accordingly, fiber cables having buffer jackets with large dimensional variations can still be securely retained by the castellated retention structure in accordance with the present invention.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 28, 2015
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Yang Chen, King-Fu Hii, Tewodros Mengesha, Fred Bosch, Chris Morgan, Robert Ryan Vallance
  • Patent number: 8961034
    Abstract: A ferrule for an optical fiber connector having open fiber clamping grooves. The ferrule has a body having a plurality of open grooves for clamping the terminating end sections of optical fibers. At least a section of the longitudinal opening of the groove is provided with opposing lips to provide a clamping effect. The width of the longitudinal opening defined between the lips along at least a section of the grooves is narrower than the diameter of the optical fibers to create a tight fit. The grooves and the width of the longitudinal groove openings are shaped and sized to retain the fibers without any clearance to allow for movement of the fiber relative to the groove. Similar grooves may be provided in the ferrule body for alignment guide pins. The grooves are precision formed by high throughput processes, such as stamping and extrusion.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 24, 2015
    Assignee: Nanoprecision Products, Inc.
    Inventors: Shuhe Li, Robert Ryan Vallance, Michael K. Barnoski
  • Patent number: 8740029
    Abstract: Axial tension is applied to an optical fiber that had been scored at the intended cleave location, wherein the axial tension is applied in a time-varying manner to maintain the stress intensity factor for crack on the fiber within an acceptable level to produce a stable crack growth at a reasonable rate to cleave the fiber without requiring polishing of the end surface. Careful control of the applied tension force with time acts to control the velocity of the propagating crack by maintaining substantially constant stress intensity factor. The applied axial tension force is reduced with time and/or crack growth (as crack propagates). As a result, the strain energy in the fiber material is released by formation of a single plane with an optical quality surface without requiring polishing. A substantially flat optical surface of enhanced optical quality is formed at the cleaved end of the optical fiber.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: June 3, 2014
    Assignee: Nanoprecision Products, Inc.
    Inventors: Michael K. Barnoski, Suresh T. Gulati, King-Fu Hii, Donald Keck, William R. Powell, R. Ryan Vallance
  • Publication number: 20140083273
    Abstract: A portable, hand tool for scribing optical fibers in a cleaving process. The scribing tool comprises a body within which the optical fiber is supported for rotation with respect to the body, about an axis within the body. The optical fiber is constrained by supports from movements along its axis. An actuator moves a scribing bit orthogonal relative to the fiber axis. The actuator may be a piezoelectric actuator, such as in a tube that bends under applied voltage. In one embodiment the scribing tool has a single scribing bit. In another embodiment, the scribing tool has multiple (N) scribing bits that can be applied against the optical fiber simultaneously.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 27, 2014
    Applicant: NANOPRECISION PRODUCTS, INC.
    Inventors: Robert Ryan VALLANCE, Eric MARSH
  • Publication number: 20130322818
    Abstract: A coupling device for physically and optically coupling an input/output end of an optical fiber for routing optical signals, to and from optical receiver and/or transmitter. The coupling device includes a structured reflective surface that functions as an optical element that directs light to/from the input/output ends of the optical fiber by reflection, and an optical fiber retention groove structure that positively receives the optical fiber in a manner with the end of the optical fiber at a defined distance to and aligned with the structured reflective surface. The open structure of the structured reflective surface and fiber retention structure lends itself to mass production processes such as precision stamping. The coupling device can be attached to an optical transmitter and/or receiver, with the structured reflective surface aligned to the light source in the transmitter or to the detector in the receiver, and adapted in an active optical cable.
    Type: Application
    Filed: March 5, 2013
    Publication date: December 5, 2013
    Applicant: NANOPRECISION PRODUCTS, INC.
    Inventor: Nanopresicion Products, Inc.
  • Publication number: 20130266268
    Abstract: A compliant structure clamps the alignment pins to accurately and precisely locate the alignment pins. The compliant structure supports the alignment pins with no clearance. The compliant structure is defined by at least a flexure in the form of a cantilevered structure extending at a side of the ferrule. The cantilevered structure, with or without a complementary support structure, defines a space in which an alignment pin can be supported. The flexure may be defined by one or more slots provided on the body of the ferrule to facilitate bending of the extended cantilevered structure. In another embodiment, the ferrule comprises a ferrule insert having grooves for supporting optical fibers, and a ferrule frame that supports the ferrule insert and alignment pins. The compliant structure is provided on the frame. In a further embodiment, the ferrule insert is provided with optical fiber grooves at its perimeter.
    Type: Application
    Filed: October 11, 2012
    Publication date: October 10, 2013
    Applicant: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe LI, Robert Ryan VALLANCE, Michael K. BARNOSKI, Gregory L. KLOTZ
  • Publication number: 20130266271
    Abstract: A ferrule for a high density optical fiber connector, supporting a first set of optical fibers of a first fiber cable and a second set of optical fibers of a second fiber cable. The ferrule supports the first and second sets of optical fibers in at least one plane. In one embodiment, the first set of optical fibers are supported in a first row of open grooves, and the second set of optical fibers are supported in a second row of open grooves. The optical fibers in the first row are staggered with respect to the optical fibers of the second row. The ferrule comprises two halves, each having an open structure that has a row of open grooves precisely formed thereon in a plane. In another embodiment, the ferrule supports the first and second sets of optical fibers in a single row, in an alternating interleaving manner.
    Type: Application
    Filed: October 11, 2012
    Publication date: October 10, 2013
    Applicant: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe LI, Robert Ryan VALLANCE, Michael K. BARNOSKI, Gregory L. KLOTZ
  • Publication number: 20130121656
    Abstract: A cable retention structure defining a castellated fiber cable clamping surface. The castellated surface has a series of alternating small and large cavities distributed along the axial direction. The small cavities are sized such that when the castellated surface is pressed against the buffer jacket exterior of the fiber cable, the small cavities will be able to clamp the fiber cable jacket within its full dimensional tolerance range. The large cavities are sized to provide sufficient clearance to accommodate the relatively soft material of the cable jacket which cannot be accommodated by the small cavities. The cable jacket is securely held by the retention structure to prevent slipping. Accordingly, fiber cables having buffer jackets with large dimensional variations can still be securely retained by the castellated retention structure in accordance with the present invention.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 16, 2013
    Applicant: NANOPRECISION PRODUCTS, INC.
    Inventor: Nanoprecision Products, Inc.
  • Publication number: 20120257860
    Abstract: A ferrule for an optical fiber connector having open fiber clamping grooves. The ferrule has a body having a plurality of open grooves for clamping the terminating end sections of optical fibers. At least a section of the longitudinal opening of the groove is provided with opposing lips to provide a clamping effect. The width of the longitudinal opening defined between the lips along at least a section of the grooves is narrower than the diameter of the optical fibers to create a tight fit. The grooves and the width of the longitudinal groove openings are shaped and sized to retain the fibers without any clearance to allow for movement of the fiber relative to the groove. Similar grooves may be provided in the ferrule body for alignment guide pins. The grooves are precision formed by high throughput processes, such as stamping and extrusion.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Applicant: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe LI, Robert Ryan Vallance, Michael K. Barnoski
  • Patent number: 7343770
    Abstract: A system and process for stamping parts having tolerances below 1000 nanometers. The inventive system and process is particularly suited for producing optoelectronic parts. The system includes a stamping press and one or a progression of stamping stations for supporting a punch and die. The stamping stations are designed to maintain substantial alignment of the punch and die with minimal moving components. The stamping station includes a shaft for rigidly guiding the punch to the die. The stamping press is capable of providing the punch with the necessary force to perform the stamping operations. The system includes an interface system for interfacing the force of the press with the punch, while simultaneously structurally decoupling the press from the punch. The system also includes a locating sub-plate, for locating the stamping station in alignment relative to each other, and means for in-line machine stock material before entry into the stamping stations.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: March 18, 2008
    Assignee: Nanoprecision Products, Inc.
    Inventors: Michael K Barnoski, David Cohen, Dan Harris, Sangkyun Kang, Anthony Levi, Miguel Pinilla, Fritz Prinz, Alex Tarasyuk
  • Patent number: 7311449
    Abstract: An optoelectronic assembly having components designed to be fabricated on a stamping process capable of producing parts having tolerances below 1000 nanometers. The optoelectronic assembly includes ferrules and sleeves. The ferrules can include two identical half ferrules that are forged and assembled together to form the ferrule body. The ferrules can also be designed to be alternatively produced by forming processes or produced by a combination of forging and forming processes. The pair of ferrules supporting one or more optical fibers are guided together by a high precision split sleeve for coupling the fibers together.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: December 25, 2007
    Assignee: Nanoprecision Products, Inc.
    Inventors: Michael K Barnoski, Anthony Levi, Fritz Prinz, Alex Tarasyuk