Abstract: A radiation-assisted (typically solar-assisted)electrolyzer cell and panel for high-efficiency hydrogen production comprises a photoelectrode and electrode pair, with said photoelectrode comprising either a photoanode electrically coupled to a cathode shared with an anode, or a photocathode electrically coupled to an anode shared with a cathode; electrolyte; gas separators; all within a container divided into two chambers by said shared cathode or shared anode, and at least a portion of which is transparent to the electromagnetic radiation required by said photoanode (or photocathode) to apply photovoltage to a shared cathode (or anode) that increases the electrolysis current and hydrogen production.
Abstract: A radiation-assisted (typically solar-assisted) electrolyzer cell and panel for high-efficiency hydrogen production comprises a photoelectrode and electrode pair, with said photoelectrode comprising either a photoanode electrically coupled to a cathode shared with an anode, or a photocathode electrically coupled to an anode shared with a cathode; electrolyte; gas separators; all within a container divided into two chambers by said shared cathode or shared anode, and at least a portion of which is transparent to the electromagnetic radiation required by said photoanode (or photocathode) to apply photovoltage to a shared cathode (or anode) that increases the electrolysis current and hydrogen production.
Abstract: Titania having high visible light photocatalytic activity is prepared by (a) mixing titania with carbon powder; (b) heating the titania/carbon powder mixture to at least about 1000° C. in an inert or weakly reactive atmosphere; and (c) thereafter heating the resultant powder mixture to a temperature in the range of about 350 to about 1000° C. in an oxidizing atmosphere. The resultant titania may be used for detoxifying or disinfecting liquids for gases, for generating hydrogen from aqueous media and in sunscreens and sunglasses.
Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.2 and greater, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
Type:
Grant
Filed:
June 10, 2008
Date of Patent:
March 18, 2014
Assignee:
Nanoptek Corporation
Inventors:
John M. Guerra, Lukas M. Thulin, Amol N. Chandekar
Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.
Abstract: Titania is a semiconductor and photocatalyst that is also chemically inert. With its bandgap of 3.0, to activate the photocatalytic property of titania requires light of about 390 nm wavelength, which is in the ultra-violet, where sunlight is very low in intensity. A method and devices are disclosed wherein stress is induced and managed in a thin film of titania in order to shift and lower the bandgap energy into the longer wavelengths that are more abundant in sunlight. Applications of this stress-induced bandgap-shifted titania photocatalytic surface include photoelectrolysis for production of hydrogen gas from water, photovoltaics for production of electricity, and photocatalysis for detoxification and disinfection.