Patents Assigned to NanoRay Biotech Co., Ltd.
  • Patent number: 11950945
    Abstract: A radiography diagnosis device includes a casing having an opening, a first shielding structure, a dose measuring unit, a transmission-type X-ray source module, and an image receiving assembly. The first shielding structure is disposed in the casing and forms a shielded space located between the transmission-type X-ray source module and the image receiving assembly and corresponding to the opening. An object to be detected is adapted to enter the shielded space through the opening. The transmission-type X-ray source module is disposed in the casing and adapted to provide an X-ray toward the object to be detected in the shielded space. The image receiving assembly is disposed in the casing. During image capturing, the X-ray generated by the transmission-type X-ray source module is received by the dose measuring unit, and the image receiving assembly receives the X-ray passing through the object to be detected at the same time.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: April 9, 2024
    Assignee: NanoRay Biotech Co., Ltd.
    Inventor: Wen-Yuan Cheng
  • Publication number: 20220148712
    Abstract: A radiation imaging system and a radiation imaging method are provided. The radiation imaging system includes a remote-control module and an imaging device. The imaging device has a radiation isolation cavity. The radiation isolation cavity includes a radiation irradiation area adapted for placing an object under test. The imaging device includes a controller, a radiation source, and a flat panel detector. The radiation source is disposed on a top of the radiation isolation cavity and faces the radiation irradiation area. The flat panel detector is disposed below the radiation exposure area. During a preparation for exposure, the controller turns on the radiation source. When the controller receives an activation signal output by the remote-control module, the controller operates the flat panel detector to obtain a radiation image corresponding to the object under test.
    Type: Application
    Filed: October 14, 2021
    Publication date: May 12, 2022
    Applicant: NanoRay Biotech Co., Ltd.
    Inventor: Wen-Yuan Cheng
  • Publication number: 20220142595
    Abstract: A radiography diagnosis device includes a casing having an opening, a first shielding structure, a dose measuring unit, a transmission-type X-ray source module, and an image receiving assembly. The first shielding structure is disposed in the casing and forms a shielded space located between the transmission-type X-ray source module and the image receiving assembly and corresponding to the opening. An object to be detected is adapted to enter the shielded space through the opening. The transmission-type X-ray source module is disposed in the casing and adapted to provide an X-ray toward the object to be detected in the shielded space. The image receiving assembly is disposed in the casing. During image capturing, the X-ray generated by the transmission-type X-ray source module is received by the dose measuring unit, and the image receiving assembly receives the X-ray passing through the object to be detected at the same time.
    Type: Application
    Filed: October 13, 2021
    Publication date: May 12, 2022
    Applicant: NanoRay Biotech Co., Ltd.
    Inventor: Wen-Yuan Cheng
  • Patent number: 10431414
    Abstract: A composite target is provided and is interacted with an electron to generate an X-ray, and an energy of the electron can be changed by controlling a tube voltage at least. The composite target includes a target body and an interposing layer which is connected with the target body. The interposing layer moves a highest peak of an energy spectrum of the X-ray toward a high energy direction. The interposing layer may be a single metal or a metal mixture. Not only a low energy photon of the X-ray can be filtered by the interposing layer, but also a distribution of the low energy photon of the X-ray can be increased by increasing a thickness of the interposing layer. As the tube voltage is enhanced, an amount of a high energy photon of the X-ray generated is dramatically increased. An X-ray tube containing the above composite target is also provided.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: October 1, 2019
    Assignee: NanoRay Biotech Co., Ltd.
    Inventor: Chi-Chieh Cheng
  • Patent number: 9655576
    Abstract: An X-ray phase-shift contrast imaging method and the system thereof are provided. The X-ray phase-shift contrast imaging method utilizes characteristic X-rays of high throughput irradiating at the target from different positions or with different focal positions so as to form different X-ray images. The X-ray images are compared to define the voxels and combined to obtain a 3-D X-ray image. By using X-ray phase-shift contrast for imaging the soft tissue, the level of the image contrast may be enhanced several orders of magnitude and the linear energy transfer of the high energy photon beam is greatly reduced. Hence, the radiation dose absorbed by the tissue may be greatly reduced.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: May 23, 2017
    Assignee: NanoRay Biotech Co., Ltd.
    Inventor: Chia-Gee Wang
  • Patent number: 9036786
    Abstract: The present invention provides a transmission type X-ray tube and a reflection type X-ray tube. The transmission type X-ray tube comprises a target and a filter material. The target has at least one element which produces X-rays as being excited. The X-rays comprise characteristic K? and K? emission energies of the element for producing images of an object impinged by the X-rays. The filter material through which the X-rays pass has a k-edge absorption energy that is higher than the K? emission energies and is lower than the K? emission energies. The thickness of the filter material is at least 10 microns and less than 3 millimeters.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: May 19, 2015
    Assignee: NanoRay Biotech Co., Ltd.
    Inventors: Bruce Briant Parsons, Chi-Chieh Cheng