Patents Assigned to NanoScale Corporation
  • Publication number: 20130036908
    Abstract: Apparatus and methods for reducing or eliminating undesirable air-borne substances, such as odors, bacteria, viruses, fungi, and toxins, are provided. A filter containing nanocrystalline metal oxide or metal hydroxide particles may be installed within an air handling apparatus such as an existing HVAC unit located within a building, and particularly within a home, or a portable air processor or purifier. The air handling apparatus comprises a blower which pulls air containing various undesirable substances from within the enclosed environment and directs it through a filtering device containing the nanocrystalline particles. The undesirable substances are sorbed by the nanocrystalline particles thereby creating a deodorized stream of air that may then be directed back into various portions of the enclosed environment or vented to the atmosphere.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 14, 2013
    Applicant: NanoScale Corporation
    Inventor: NanoScale Corporation
  • Publication number: 20120157824
    Abstract: The present invention provides multifunctional nanoplatforms for assessing the activity of a protease in vivo or in vitro, along with methods of imaging and detecting the presence of cancerous or precancerous tissues, and the therapeutic treatment thereof, including monitoring of treatment. The diagnostic nanoplatforms comprise nanoparticles and are linked to each other or other particles via an oligopeptide linkage that comprises a consensus sequence specific for the target protease. Cleavage of the sequence by the target protease can be detected using various sensors, and the diagnostic results can be correlated with cancer prognosis. Individual unlinked nanoplatforms are also adaptable for therapeutic hyperthermia treatment of the cancerous tissue.
    Type: Application
    Filed: August 31, 2010
    Publication date: June 21, 2012
    Applicants: NANOSCALE CORPORATION, KANSAS STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Stefan H. Bossmann, Deryl Troyer, Matthew T. Basel, Thilani Nishanthika Samarakoon, Hongwang Wang, Viktor Chikan, Franklin Orban Kroh, Olga Barbara Koper, Brandon Ray Walker, Xiaoxuan Leaym
  • Patent number: 8183426
    Abstract: The invention provides a sorptive sheet material in which finely divided nanocrystalline particles that react with a variety of chemical and/or biological agents are dispersed. The sheet material comprises a fibrous web that is formed of a plurality of fibers that are bonded to each other. The fibrous web contains a relatively high concentration of reactive nanocrystalline particles that are entrapped within the matrix of the fibrous web. Fluids containing toxic agents, such as chemical and/or biological agents, odors and/or odor causing compounds, and toxic industrial compounds, pass into the web and contact the reactive nanocrystalline particles contained therein. The reactive nanocrystalline particles react with, and chemically alter or inactivate the toxic agents. The sorptive sheet material may be used to construct containers, such as remains pouches, for the storing and transporting of contaminated items, particularly human remains.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 22, 2012
    Assignees: NanoScale Corporation, Kappler, Inc.
    Inventors: Jason R. Cole, Philip Mann, Shyamala Rajagopalan, Olga Koper
  • Patent number: 8038935
    Abstract: Methods of removing odors, particularly odors within enclosed environments are provided which employ nanocrystalline metal oxide and metal hydroxide particles. The nanocrystalline particles are dispersed within an enclosed space so as to contact exposed surfaces located within the space such as walls, floors, upholstery, and the like and adsorb odor-causing materials located within the enclosed space.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: October 18, 2011
    Assignee: NanoScale Corporation
    Inventors: Olga Koper, HaiDoo Kwen, Scott Toerber, Kyle Knappenberger, David Jones, Debbie Basco, Ken Klabunde, Bill Sanford
  • Patent number: 7956232
    Abstract: Compositions and methods for destroying biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide or hydroxide nanocrystals. In various embodiments, the metal oxide or metal hydroxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide or metal hydroxide nanocrystals can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, [Ce(NO3)3—Cu(NO3)2]TiO2, Mg(OH)2, Ca(OH)2, Al(OH)3, Sr(OH)2, Ba(OH)2, Fe(OH)3, Cu(OH)3, Ni(OH)2, Co(OH)2, Zn(OH)2, AgOH, and mixtures thereof.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: June 7, 2011
    Assignee: NanoScale Corporation
    Inventors: Olga Koper, Kenneth J. Klabunde, Lisa S. Martin, Kyle B. Knappenberger, Laura L. Hladky, Shawn P. Decker
  • Publication number: 20100101413
    Abstract: Apparatus and methods for reducing or eliminating undesirable air-borne substances, such as odors, bacteria, viruses, fungi, and toxins, are provided. A filter containing nanocrystalline metal oxide or metal hydroxide particles may be installed within an air handling apparatus such as an existing HVAC unit located within a building, and particularly within a home, or a portable air processor or purifier. The air handling apparatus comprises a blower which pulls air containing various undesirable substances from within the enclosed environment and directs it through a filtering device containing the nanocrystalline particles. The undesirable substances are sorbed by the nanocrystalline particles thereby creating a deodorized stream of air that may then be directed back into various portions of the enclosed environment or vented to the atmosphere.
    Type: Application
    Filed: August 26, 2009
    Publication date: April 29, 2010
    Applicant: NANOSCALE CORPORATION
    Inventors: David Jones, Kyle Knappenberger, Lincoln Mertz, Olga Koper, David Brotton, Deborah Basco, Bill Sanford
  • Patent number: 7661483
    Abstract: Methods of reducing smoke levels in smoke-affected areas, reducing the level of toxic compounds produced by fires, fire suppression, and increasing flame retardancy. In particular, methods according to the present invention comprise dispersing nanocrystalline particles in the areas affected by smoke for sorption of smoke particulates and toxic compounds produced from a fire. The nanocrystalline particles are also effective for use in methods of fire suppression and flame retardancy.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: February 16, 2010
    Assignee: NanoScale Corporation
    Inventors: Ravichandra S. Mulukutla, Paul S. Malchesky, Ronaldo Maghirang, John S. Klabunde, Kenneth J. Klabunde, Olga Koper
  • Publication number: 20090260645
    Abstract: A tobacco product comprising nanocrystalline particles and methods of reducing the levels of undesirable compounds in tobacco smoke are provided. The nanocrystalline particles are effective sorbents of numerous toxic compounds released by burning tobacco and may be incorporated into the tobacco itself, incorporated into a filter element, or incorporated into the fibers of a wrapping paper.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 22, 2009
    Applicant: NANOSCALE CORPORATION
    Inventors: David Brotton, Olga B. Koper
  • Patent number: 7566393
    Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 28, 2009
    Assignee: NanoScale Corporation
    Inventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
  • Publication number: 20090118562
    Abstract: The invention provides a sorptive sheet material in which finely divided nanocrystalline particles that react with a variety of chemical and/or biological agents are dispersed. The sheet material comprises a fibrous web that is formed of a plurality of fibers that are bonded to each other. The fibrous web contains a relatively high concentration of reactive nanocrystalline particles that are entrapped within the matrix of the fibrous web. Fluids containing toxic agents, such as chemical and/or biological agents, odors and/or odor causing compounds, and toxic industrial compounds, pass into the web and contact the reactive nanocrystalline particles contained therein. The reactive nanocrystalline particles react with, and chemically alter or inactivate the toxic agents. The sorptive sheet material may be used to construct containers, such as remains pouches, for the storing and transporting of contaminated items, particularly human remains.
    Type: Application
    Filed: October 10, 2008
    Publication date: May 7, 2009
    Applicants: NanoScale Corporation, Kappler, Inc.
    Inventors: Jason R. Cole, Philip Mann, Shyamala Rajagopalan, Olga Koper
  • Publication number: 20090098016
    Abstract: Methods of removing odors, particularly odors within enclosed environments are provided which employ nanocrystalline metal oxide and metal hydroxide particles. The nanocrystalline particles are dispersed within an enclosed space so as to contact exposed surfaces located within the space such as walls, floors, upholstery, and the like and adsorb odor-causing materials located within the enclosed space.
    Type: Application
    Filed: October 26, 2006
    Publication date: April 16, 2009
    Applicant: NANOSCALE CORPORATION
    Inventors: Olga Koper, HaiDoo Kwen, Scott Toerber, Kyle Knappenberger, David Jones, Debbie Basco, Ken Klabunde, Bill Sanford
  • Publication number: 20080102136
    Abstract: Compositions and methods for destroying biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide or hydroxide nanocrystals. In various embodiments, the metal oxide or metal hydroxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide or metal hydroxide nanocrystals can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, [Ce(NO3)3—Cu(NO3)2]TiO2, Mg(OH)2, Ca(OH)2, Al(OH)3, Sr(OH)2, Ba(OH)2, Fe(OH)3, Cu(OH)3, Ni(OH)2, Co(OH)2, Zn(OH)2, AgOH, and mixtures thereof.
    Type: Application
    Filed: January 2, 2008
    Publication date: May 1, 2008
    Applicant: NanoScale Corporation
    Inventors: Olga Koper, Kenneth Klabunde, Lisa Martin, Kyle Knappenberger, Laura Hladky, Shawn Decker
  • Patent number: 7341977
    Abstract: Compounds and methods for sorbing organosulfur compounds from fluids are provided. Generally, compounds according to the present invention comprise mesoporous, nanocrystalline metal oxides. Preferred metal oxide compounds either exhibit soft Lewis acid properties or are impregnated with a material exhibiting soft Lewis acid properties. Methods according to the invention comprise contacting a fluid containing organosulfur contaminants with a mesoporous, nanocrystalline metal oxide. In a preferred embodiment, nanocrystalline metal oxide particles are formed into pellets (14) and placed inside a fuel filter housing (12) for removing organosulfur contaminants from a hydrocarbon fuel stream.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: March 11, 2008
    Assignee: NanoScale Corporation
    Inventors: Kenneth Klabunde, Bill R. Sanford, P. Jeevanandam
  • Patent number: 7335808
    Abstract: Compositions and methods for destroying biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide or hydroxide nanocrystals. In various embodiments, the metal oxide or metal hydroxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide or metal hydroxide nanocrystals can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, [Ce(NO3)3—Cu(NO3)2]TiO2, Mg(OH)2, Ca(OH)2, Al(OH)3, Sr(OH)2, Ba(OH)2, Fe(OH)3, Cu(OH)3, Ni(OH)2, Co(OH)2, Zn(OH)2, AgOH, and mixtures thereof.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: February 26, 2008
    Assignee: NanoScale Corporation
    Inventors: Olga Koper, Kenneth J. Klabunde, Lisa S. Martin, Kyle B. Knappenberger, Laura L. Hladky, Shawn P. Decker
  • Publication number: 20070286796
    Abstract: An improved mixed metal oxide material suitable for use in electrochemical cells is provided. The mixed metal oxide material generally exhibits high surface area and pore volume than conventionally manufactured materials thereby imparting improved electrochemical performance. Batteries manufactured using the mixed metal oxide material are particularly suited for use in implantable medical devices.
    Type: Application
    Filed: June 6, 2007
    Publication date: December 13, 2007
    Applicant: NANOSCALE CORPORATION
    Inventors: Olga Koper, Janis Voo, Slawomir Winecki, John Rasinski, Paul Malchesky, Kenneth Klabunde
  • Patent number: 7279129
    Abstract: Metal oxide area decontamination apparatus (10) is provided which is designed for rapid, emergency situation decontamination of areas contaminated with potentially harmful or lethal chemical and/or biological warfare agents or other hazardous substances. The apparatus (10) preferably includes a pressurizable metallic container (12) equipped with a valve-type delivery nozzle assembly (16), so that upon a manipulation of the assembly (16), a spray of metal oxide and/or metal hydroxide particles is generated; the particles are selected and sized in order to destroy or chemisorb the contaminating agents. The preferred decontamination agent is MgO aggregated to an average aggregate size of from about 50 nm-10 microns. The particles are mixed with a gaseous or liquid propellant within the container (12) allowing rapid and thorough particle cleanout when the nozzle assembly (16) is actuated.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: October 9, 2007
    Assignee: NanoScale Corporation
    Inventors: Bret E. Lanz, Thomas Allen
  • Patent number: 7276640
    Abstract: Methods of reducing smoke levels in smoke-affected areas, reducing the level of toxic compounds produced by fires, fire suppression, and increasing flame retardancy. In particular, methods according to the present invention comprise dispersing nanocrystalline particles in the areas affected by smoke for sorption of smoke particulates and toxic compounds produced from a fire. The nanocrystalline particles are also effective for use in methods of fire suppression and flame retardancy.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: October 2, 2007
    Assignee: NanoScale Corporation
    Inventors: Ravichandra S. Mulukutla, Paul S. Malchesky, Ronaldo Maghirang, John S. Klabunde, Kenneth J. Klabunde, Olga Koper