Patents Assigned to NanoScale Materials, Inc.
  • Patent number: 7396569
    Abstract: The present invention relates to methodologies for the self-assembly of nanoparticles onto a release support that is capable of covalent integration into flexible free-standing films. Such films display usefull constitutive properties, such as permittivity, permeability, electrical conductivity, thermal conductivity, and nonlinear optic properties. The type of property is dependant upon the type of nanoparticle incorporated into the compliant polymeric matrix. The compliant matrix may be any material that reacts with the components in the nanoparticle film and may be separated from the release substrate. The nanoparticles may be dispersed uniformly or spatially patterned throughout the self-assembled film.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: July 8, 2008
    Assignee: NanoScale Materials, Inc.
    Inventors: Jennifer Hoyt Lalli, Jiyun Huie, Ben Lepene
  • Patent number: 6887302
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: May 3, 2005
    Assignee: NanoScale Materials, Inc.
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6860924
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: March 1, 2005
    Assignee: NanoScale Materials, Inc.
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6740141
    Abstract: A method for removing at least one contaminant selected from the group consisting of H2S and CO2 from contaminating streams, including the steps of providing an above ground stream comprising hydrocarbon containing the at least one contaminant, and positioning metal-containing nanoparticles having a particle size of less than or equal to about 100 nm in the stream, the metal-containing nanoparticles being selected from the group consisting of metal oxides, metal hydroxides and combinations thereof, whereby the nanoparticles adsorb the contaminants from the stream.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: May 25, 2004
    Assignees: Intevep, S.A., NanoScale Materials, Inc.
    Inventors: Douglas Espin, Aaron Ranson, Mariela Araujo, Kenneth Klabunde, Shawn Decker, Slawomir Winecki
  • Patent number: 6653519
    Abstract: Compositions and methods for destroying biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide or hydroxide nanocrystals. In various embodiments, the metal oxide or metal hydroxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide or metal hydroxide nanocrystals can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, [Ce(NO3)3—Cu(NO3)2]TiO2, Mg(OH)2, Ca(OH)2, Al(OH)3, Sr(OH)2, Ba(OH)2, Fe(OH)3, Cu(OH)3, Ni(OH)2, Co(OH)2, Zn(OH)2, AgOH, and mixtures thereof.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: November 25, 2003
    Assignee: Nanoscale Materials, Inc.
    Inventors: Olga Koper, Kenneth J. Klabunde, Lisa S. Martin, Kyle B. Knappenberger, Laura L. Hladky, Shawn P. Decker
  • Publication number: 20030215355
    Abstract: Metal oxide area decontamination apparatus (10) is provided which is designed for rapid, emergency situation decontamination of areas contaminated with potentially harmful or lethal chemical and/or biological warfare agents or other hazardous substances. The apparatus (10) preferably includes a pressurizable metallic container (12) equipped with a valve-type delivery nozzle assembly (16), so that upon a manipulation of the assembly (16), a spray of metal oxide and/or metal hydroxide particles is generated; the particles are selected and sized in order to destroy or chemisorb the contaminating agents. The preferred decontamination agent is MgO aggregated to an average aggregate size of from about 50 nm-10 microns. The particles are mixed with a gaseous or liquid propellant within the container (12) allowing rapid and thorough particle cleanout when the nozzle assembly (16) is actuated.
    Type: Application
    Filed: May 14, 2002
    Publication date: November 20, 2003
    Applicant: NANOSCALE MATERIALS, INC.
    Inventors: Bret E. Lanz, Michael W. Sigel, David A. Jones, Jeffrey T. Rhule, Ravichandra S. Mulukutla
  • Patent number: 6417423
    Abstract: Compositions and methods for destroying biological agents and toxins such as Aflatoxins, Botulinum toxins, and Clostridium perfrigens toxins are provided wherein the substance to be destroyed is contacted with a finely divided metal oxide nanocrystals. In various embodiments, the metal oxide nanocrystals have reactive atoms stabilized on their surfaces, species adsorbed on their surfaces, or are coated with a second metal oxide. The desired metal oxide nanocrystals can be pressed into pellets for use when a powder is not feasible. The methods of the invention are safe for humans, equipment, and the environment, and provide for decontamination of warfare sites, of equipment exposed to the contaminant, and of soil, water and air having been exposed to the contaminant. Preferred metal oxides for the methods include MgO, CaO, TiO2, ZrO2, FeO, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, ZnO and mixtures thereof.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: July 9, 2002
    Assignee: Nanoscale Materials, Inc.
    Inventors: Olga Koper, Kenneth J. Klabunde, John S. Klabunde
  • Patent number: 6410603
    Abstract: A topical skin protectant formulation containing a barrier cream and a active moiety for protecting warfighters and civilians against all types of harmful chemicals, specifically chemical warfare agents (CWAs). The topical skin protectant offers a barrier property and an active moiety that serves to neutralize chemical warfare agents into less toxic agents.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: June 25, 2002
    Assignees: The United States of America as represented by the Secretary of the Army, Nanoscale Materials, Inc., Emory University
    Inventors: Stephen T. Hobson, Ernest H. Braue, Erich K. Lehnert, Kenneth J. Klabunde, Shawn Decker, Craig L. Hill, Jeffrey Rhule, Eric Boring, Olga Koper
  • Patent number: 6403653
    Abstract: A topical skin protectant formulation containing a barrier cream and an active moiety for protecting warfighters and civilians against all types of harmful chemicals, specifically chemical warfare agents (CWA's). The topical skin protectant offers a barrier property and an active moiety that serves to neutralize chemical warfare agents into less toxic agents.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: June 11, 2002
    Assignees: The United States of America as represented by the Secretary of the Army, Nanoscale Materials, Inc.
    Inventors: Stephen T. Hobson, Ernest H. Braue, Jr., Erich K. Lehnert, Kenneth J. Klabunde, Olga P. Koper, Shawn Decker