Patents Assigned to Nano Scale Surface Systems, Inc.
  • Patent number: 8947653
    Abstract: A method for detecting a coating on a bottle includes directing light at a first point of incidence on the bottle and detecting a first intensity of reflected light from the first point of incidence on the bottle. Further, light is directed at a second point of incidence on the bottle and a second intensity of reflected light from the second point of incidence on the bottle is detected. The first intensity is compared to the second intensity to determine whether the coating on the bottle has been uniformly deposited.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: February 3, 2015
    Assignee: Nano Scale Surface Systems, Inc.
    Inventors: John Thomas Felts, Christopher John Felts
  • Patent number: 7513953
    Abstract: A bottle processing apparatus includes a rotary bottle vacuum transfer system and a bottle coating system. The rotary bottle vacuum transfer system takes bottles from atmospheric pressure and transfers the bottles to the bottle coating system at a sub-atmospheric pressure in a continuous assembly line fashion. In the bottle coating system, a thin film coating having barrier properties is formed on at least one surface of the bottles in a continuous assembly line fashion. After formation of the thin film coating, the rotary bottle vacuum transfer system returns the bottles from the sub-atmospheric pressure region of the bottle coating system back to atmospheric pressure in a continuous assembly line fashion.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: April 7, 2009
    Assignee: Nano Scale Surface Systems, Inc.
    Inventor: John T. Felts
  • Patent number: 6539890
    Abstract: An apparatus for forming a film on a substrate includes a gas inlet and an insert attached to the gas inlet, the insert including a deposition source material such as lithium. To form the film on the substrate, the substrate is mounted in a vacuum chamber. After the vacuum chamber is pumped down to a subatmospheric pressure, a first process gas such as argon is provided through the gas inlet and insert and into a plasma region proximate the substrate. Power is then coupled to generate a plasma inside of the insert which heats the insert and causes the deposition source material to vaporize. The deposition source material vapor is mixed with a plasma polymerizable material in the plasma region proximate the substrate causing a plasma enhanced chemical vapor deposition (PECVD) thin film such as silicon oxide including the deposition source material (e.g. lithium) to be deposited on the substrate.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: April 1, 2003
    Assignee: Nano Scale Surface Systems, Inc.
    Inventor: John T. Felts
  • Patent number: 6180191
    Abstract: A gas inlet, which also serves as a counter electrode, is located inside of a vacuum chamber made of an electrically insulating material. A container is mounted on a mandrel mounted on the gas inlet. The chamber is evacuated to a subatmospheric pressure. A process gas is then introduced into the container through the gas inlet. The process gas is ionized by coupling RF power to a main electrode located adjacent an exterior surface of the chamber and to the gas inlet which deposits a plasma enhanced chemical vapor deposition (PECVD) thin film onto the interior surface of the container.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: January 30, 2001
    Assignee: Nano Scale Surface Systems, Inc.
    Inventor: John T. Felts
  • Patent number: 6112695
    Abstract: A gas inlet, which also serves as a counter electrode, is located inside of a vacuum chamber made of an electrically insulating material. A container is mounted on a mandrel mounted on the gas inlet. The chamber is evacuated to a subatmospheric pressure. A process gas is then introduced into the container through the gas inlet. The process gas is ionized by coupling RF power to a main electrode located adjacent an exterior surface of the chamber and to the gas inlet which deposits a plasma enhanced chemical vapor deposition (PECVD) thin film onto the interior surface of the container.
    Type: Grant
    Filed: October 8, 1996
    Date of Patent: September 5, 2000
    Assignee: Nano Scale Surface Systems, Inc.
    Inventor: John T. Felts