Patents Assigned to Nanotek Instruments, Inc.
  • Publication number: 20200168898
    Abstract: Provided is an anode particulate for a lithium battery, the particulate comprising a core and a thin encapsulating layer that encapsulates or embraces the core, wherein the core comprises a single or a plurality of primary particles of an anode active material, having a volume Va, dispersed or embedded in a porous carbon matrix (a carbon foam), wherein the porous carbon matrix contains pores having a pore volume Vp, and the thin encapsulating layer comprises graphene sheets and has a thickness from 1 nm to 10 ?m, an electric conductivity from 10?6 S/cm to 20,000 S/cm and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm and wherein the volume ratio Vp/Va is from 0.5/1.0 to 5.0/1.0. The carbon foam is preferably reinforced with a high-strength material.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 28, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yaw Yuh Ko, Bor Z. Jang
  • Publication number: 20200168899
    Abstract: Provided is an anode particulate or a solid mass of particulates for a lithium battery, the particulate comprising a graphite matrix and a single or a plurality of carbon foam-protected primary particles of an anode active material embedded or dispersed in the graphite matrix, wherein the primary particles of anode active material have a volume Va, the carbon foam contains pores having a pore volume Vp, and the volume ratio Vp/Va is from 0.3/1.0 to 5.0/1.0 and wherein the carbon foam is physically or chemically connected to both the graphite matrix and the primary particles of the anode active material. The carbon foam is preferably reinforced with a high-strength material.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 28, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20200168356
    Abstract: A polymer matrix composite containing graphene sheets homogeneously dispersed in a polymer matrix wherein the polymer matrix composite exhibits a percolation threshold from 0.0001% to 0.1% by volume of graphene sheets to form a 3D network of interconnected graphene sheets or network of electron-conducting pathways.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 28, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Bor Z. Jang, Yi-jun Lin
  • Publication number: 20200168900
    Abstract: The invention provides multiple anode particulates for a lithium battery. At least one of the particulates comprises a core and a thin encapsulating layer encapsulating the core, wherein the core comprises a single or a plurality of porous primary particles of an anode active material (having a pore volume Vpp and a solid volume Va) dispersed or embedded in a porous carbon matrix (a carbon foam matrix) having a pore volume Vp, and the thin encapsulating layer comprises graphene sheets and has a thickness from 1 nm to 10 ?m, an electric conductivity from 10?6 S/cm to 20,000 S/cm and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm and wherein the volume ratio Vp/Va is from 0.1/1.0 to 10/1.0 or the total pore-to-solid ratio (Vp+Vpp)/Va is from 0.3/1.0 to 20/1.0.
    Type: Application
    Filed: January 2, 2019
    Publication date: May 28, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20200168894
    Abstract: Provided is an impact-transfer method of producing multiple anode particulates for a lithium battery, the method comprising: (a) mixing multiple particles of a graphitic material, multiple polymer-coated porous primary anode active material particles, with or without the presence of externally added milling balls or beads, to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus for peeling off graphene sheets from the particles of graphitic material and transferring the peeled graphene sheets to surfaces of the polymer-coated anode active material particles to produce particulates of graphene-encapsulated polymer-coated porous anode active material particles; (c) recovering the particulates from the impacting chamber and separating the particles of ball-milling media from the particulates; and (d) thermally converting the polymer in the polymer-coated particles into a carbon foam to obtain porous, graphene-encapsulated carbon foam-protected anod
    Type: Application
    Filed: January 2, 2019
    Publication date: May 28, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20200127277
    Abstract: An anode for a lithium battery, comprising multiple porous graphene particulates, wherein at least one of the particulates comprises multiple pores (total volume Vpp), pore walls, and primary particles of an anode active material (total volume Va), disposed in the pores, wherein (a) the pore walls contain a graphene material; (b) the primary particles are in an amount from 0.5% to 95% by weight based on the total particulate weight; (c) the particulate is embraced or encapsulated by a thin encapsulating layer of electrically conducting material having a thickness from 1 nm to 10 ?m, an electric conductivity from 10?6 S/cm to 20,000 S/cm and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm; and (d) the volume ratio Vpp/Va is from 1.3/1.0 to 5.0/1.0.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 23, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Sheng-Yi Lu, Wen Y. Chiu, Bor Z. Jang
  • Publication number: 20200127288
    Abstract: An process for producing multiple porous graphene particulates for a lithium battery anode, the process comprising: (a) preparing a graphene dispersion having multiple anode material particles, multiple sheets of a starting graphene material, and a blowing agent dispersed in a liquid medium, wherein the blowing agent-to-graphene material weight ratio is from 0.01/1.0 to 1.0/1.0; (b) dispensing, forming and drying the graphene dispersion into multiple droplets containing therein graphene sheets, particles of the anode active material, and the blowing agent; and (c) heat treating the droplets at a heat treatment temperature selected from 80° C. to 3,200° C. at a desired heating rate sufficient to induce volatile gas molecules from the non-carbon elements or to activate the blowing agent for producing the multiple porous graphene particulates.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 23, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Sheng-Yi Lu, Wen Y. Chiu, Bor Z. Jang
  • Publication number: 20200119353
    Abstract: Provided is a lithium battery anode electrode comprising multiple particulates of an anode active material, wherein at least a particulate comprises a plurality of porous particles of anode active material having a pore volume Vpp and a solid volume Va, an electron-conducting material as a non-porous matrix, binder or filler material (containing no porous carbon matrix or carbon foam), and additional pores having a volume Vp which are encapsulated by a thin encapsulating layer of an electrically conducting material, wherein the thin encapsulating layer has a thickness from 1 nm to 10 ?m, an electric conductivity from 10?6 S/cm to 20,000 S/cm and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm and the volume ratio Vp/Va in the particulate is from 0.1/1.0 to 10/1.0 or (Vpp+Vp)/Va is from 0.3/1.0 to 20/1.0.
    Type: Application
    Filed: January 2, 2019
    Publication date: April 16, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20200119340
    Abstract: Provided is a method of producing multiple anode particulates, comprising: a) dispersing an electrically conducting material, multiple porous primary particles of an anode active material, an optional electron-conducting material, and a sacrificial material in a liquid medium to form a precursor mixture; b) forming the precursor mixture into multiple droplets and drying the droplets; and c) removing the sacrificial material or thermally converting the sacrificial material into a carbon material to obtain multiple particulates, wherein a particulate comprises a plurality of porous anode active material particles having a pore volume Vpp and a solid volume Va, an electron-conducting material, and additional pores having a volume Vp, which are encapsulated by a thin encapsulating layer having a thickness from 1 nm to 10 ?m and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm and the volume ratio Vp/Va in the particulate is from 0.1/1.0 to 10/1.0 or (Vpp+Vp)/Va ratio is from 0.3/1.0 to 20/1.0.
    Type: Application
    Filed: January 2, 2019
    Publication date: April 16, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20200116443
    Abstract: Provided is a multi-layer graphitic laminate comprising at least two graphitic films or graphene layers and a layer of conductive adhesive disposed between the two graphitic films or graphene layers and bonded thereto, wherein the conductive adhesive layer comprises graphene sheets or expanded graphite flakes disperse in or bonded by an adhesive resin, and the graphene sheets or expanded graphite flakes occupy a weight fraction from 0.01% to 99% based on the total conductive adhesive weight.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 16, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Yanbo Wang, Bor Z. Jang
  • Publication number: 20200119337
    Abstract: Provided is a lithium battery anode electrode comprising multiple particulates of an anode active material, wherein at least a particulate comprises one or a plurality of particles of said anode active material having a volume Va, an electron-conducting material as a matrix, binder or filler material, and pores having a volume Vp which are encapsulated by a thin encapsulating layer of an electrically conducting material, wherein the thin encapsulating layer has a thickness from 1 nm to 10 ?m, an electric conductivity from 10?6 S/cm to 20,000 S/cm and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm and the volume ratio Vp/Va in the particulate is from 0.3/1.0 to 5.0/1.0. If a single primary particle is encapsulated, the single primary particle is itself porous having a free space to expand into without straining the thin encapsulating layer when the lithium battery is charged.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20200114622
    Abstract: Provided is a process for producing a multi-layer graphitic laminate, the process comprising: (A) providing a plurality of graphitic films or graphene layers, wherein at least one of said graphene layers is selected from a sheet of graphene paper, graphene fabric, graphene film, graphene membrane, or graphene foam; and (B) laminating at least two of the graphitic films and graphene layers and a conductive adhesive layer disposed between the two graphitic films or graphene layers to form the multi-layer graphitic laminate, wherein the conductive adhesive layer comprises graphene sheets or expanded graphite flakes dispersed in or bonded by an adhesive resin and the graphene sheets or expanded graphite flakes occupy a weight fraction from 0.01% to 99% based on the total conductive adhesive weight.
    Type: Application
    Filed: October 10, 2018
    Publication date: April 16, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Yanbo Wang, Bor Z. Jang
  • Publication number: 20200119338
    Abstract: Provided is a method of producing multiple anode particulates, comprising: a) dispersing an electrically conducting material, primary particles of an anode active material, an optional electron-conducting material, and a sacrificial material in a liquid medium to form a precursor mixture; b) forming the precursor mixture into droplets and drying the droplets; and c) removing the sacrificial material or thermally converting the sacrificial material into a carbon material to obtain multiple particulates, wherein a particulate comprises one or a plurality of anode active material particles having a volume Va, an electron-conducting material, and pores having a volume Vp which are encapsulated by a thin encapsulating layer having a thickness from 1 nm to 10 ?m and a lithium ion conductivity from 10?8 S/cm to 5×10?2 S/cm and the volume ratio Vp/Va in the particulate is from 0.3/1.0 to 5.0/1.0.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 16, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventor: Bor Z. Jang
  • Publication number: 20200067101
    Abstract: A method of producing a powder mass for a lithium battery, the method comprising: (a) providing a solution containing a sulfonated elastomer dissolved in a solvent or a precursor in a liquid form or dissolved in a solvent; (b) dispersing a plurality of particles of a cathode active material in the solution to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing/curing the precursor to form the powder mass, wherein the powder mass comprises multiple particulates and at least a particulate comprises one or a plurality of particles of a cathode active material being encapsulated by a thin layer of sulfonated elastomer having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 800%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm at room temperature.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Publication number: 20200067080
    Abstract: Provided is a lithium battery cathode electrode comprising multiple particulates of a cathode active material, wherein at least a particulate comprises one or a plurality of particles of a cathode active material being encapsulated by a thin layer of a sulfonated elastomer, wherein the encapsulating thin layer of sulfonated elastomer has a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 800%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm. The encapsulating layer may further contain an electron-conducting additive and/or a lithium ion-conducting additive dispersed in the sulfonated elastomer.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Publication number: 20200067077
    Abstract: Provided is a lithium battery cathode electrode comprising multiple particulates of a cathode active material, wherein at least a particulate is composed of one or a plurality of particles of a cathode active material being encapsulated by a thin layer of inorganic filler-reinforced elastomer having from 0.01% to 50% by weight of an inorganic filler dispersed in an elastomeric matrix material based on the total weight of the inorganic filler-reinforced elastomer, wherein the encapsulating thin layer of inorganic filler-reinforced elastomer has a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V (preferably 1.2-2.5 V) versus Li/Li+.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 27, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Publication number: 20200067079
    Abstract: A method of producing a powder mass for a lithium battery, comprising: (a) mixing an inorganic filler and an elastomer or its precursor in a liquid medium or solvent to form a suspension; (b) dispersing a plurality of particles of a cathode active material in the suspension to form a slurry; and (c) dispensing the slurry and removing the solvent and/or polymerizing or curing the precursor to form the powder mass, wherein at least a particulate comprises one or a plurality of cathode active material particles being encapsulated by a layer of inorganic filler-reinforced elastomer having a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 500%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm and the inorganic filler has a lithium intercalation potential from 1.1 V to 4.5 V versus Li/Li+.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 27, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Publication number: 20200052325
    Abstract: Provided is a lithium-ion battery containing an anode, a cathode, a porous separator, and an electrolyte, wherein the cathode comprises particles of a cathode active material that are packed together to form a cathode active material layer having interstitial spaces to accommodate a lithium ion receptor disposed therein and configured to receive lithium ions from the anode and enable lithium ions to enter the particles in a time-delayed manner, wherein the receptor comprises lithium-capturing groups selected from (a) redox forming species that reversibly form a redox pair with a lithium ion when the battery is charged; (b) electron-donating groups interspaced between non-electron-donating groups; (c) anions and cations wherein the anions are less or more mobile than the cations; (d) chemical reducing groups that partially reduce lithium ions from Li+1 to Li+?, wherein 0<?<1; (e) an ionic liquid; or (f) a combination thereof.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 13, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20200052350
    Abstract: Provided is a method of improving fast-dischargeability or high rate capability of a lithium secondary battery containing an anode, a cathode, a porous separator disposed between the anode and the cathode, and an electrolyte, wherein the method comprises packing particles of a cathode active material to form a cathode active material layer having interstitial spaces and disposing a lithium ion receptor in the interstitial spaces, configured to receive lithium ions from the anode through the porous separator when the battery is discharged and to enable the lithium ions to enter the particles of cathode active material in a time-delayed manner.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 13, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20200039828
    Abstract: A method of producing a graphene suspension, comprising: (a) mixing multiple particles of a graphitic material and multiple particles of a solid carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; (b) operating the energy impacting apparatus with a frequency and an intensity for a length of time sufficient for peeling off graphene sheets from the graphitic material and transferring the graphene sheets to surfaces of the carrier material particles to produce graphene-coated carrier particles inside the impacting chamber; and (c) dispersing the graphene-coated carrier particles in a liquid medium and separating the graphene sheets from the carrier material particles using ultrasonication or mechanical shearing means and removing the carrier material from the liquid medium to produce the graphene suspension. The process is fast (1-4 hours as opposed to 5-120 hours of conventional processes), environmentally benign, cost effective, and highly scalable.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 6, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Hao-Hsun Chang, Aruna Zhamu, Bor Z. Jang