Abstract: The present application provides an SGT MOSFET device, a gate structure of which is a left-right structure, wherein a second field plate conductive material layer with a depth greater than that of a gate conductive material layer is formed between a source conductive material layer and the gate conductive material layer. When the device is reversely biased, depletion capability with respect to the drift region at a side close to a channel region is enhanced due to the feature that a spacing between the second field plate conductive material layer and the drift region is less than a spacing between the source conductive material layer and the drift region. The present application further provides a method for manufacturing an SGT MOSFET device.
Abstract: The present application discloses a planar High-Electron-Mobility Transistor (HEMT), which includes a hetero-junction consisting of a first semiconductor epitaxial layer and a second semiconductor epitaxial layer, and two-dimensional electron gas located at an interface of the hetero-junction; a bottom surface of a gate trench of a trench gate is located at a bottom of the two-dimensional electron gas to cut off the two-dimensional electron gas; when gate-source voltage is higher than or equal to threshold voltage, an inversion layer is formed on a surface of the first semiconductor epitaxial layer covered by side surfaces and a bottom surface of a gate conductive material layer, and the source-end and drain-end two-dimensional electron gas is conducted to enable the device to be on; when the gate-source voltage is lower than the threshold voltage, the source-end and drain-end two-dimensional electron gas is cut off to enable the device to be off.
Abstract: The present application provides an SGT MOSFET device, a gate structure of which is a left-right structure, wherein a second field plate conductive material layer with a depth greater than that of a gate conductive material layer is formed between a source conductive material layer and the gate conductive material layer. When the device is reversely biased, depletion capability with respect to the drift region at a side close to a channel region is enhanced due to the feature that a spacing between the second field plate conductive material layer and the drift region is less than a spacing between the source conductive material layer and the drift region. The present application further provides a method for manufacturing an SGT MOSFET device.