Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's brain waves or movements, the brain waves or movements corresponding to a series of directional intentions, the intentions defining at least one line pattern, a processor configured to process the at least one line pattern, each of said at least one line patterns associated with an action of the device, and output a control signal to the non-tactile device related to the action.
Abstract: Disclosed are systems and methods for operator monitoring and fatigue detection. Disclosed systems and methods may be used to monitor operators in real-time in order to identify and/or prevent any possible cause for a potential hazard by alerting the operator and/or taking preventive measures in the event of receiving a failed response from the operator. In some embodiments, operators may be monitored by a wearable device including a plurality of sensors. In some embodiments, a system for operator monitoring may include an operator monitoring device configured to determine operator positional data, a vehicle base station configured to determine vehicle positional data, apply a machine learning based algorithm to determine if the operator is in a state of reduced alertness, and perform a corrective measure responsive to determining that the operator is in a state of reduced alertness, and a server system configured to train the machine learning based algorithm.
Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's EEG or movements, translate the EEG or movements into directional intentions, transmit the directional intentions to a secondary device, receive a command for one or more actions from the secondary device based on the transmitted directional intentions and output at least one control signal to the non-tactile device based on the received command for one or more actions. The non-tactile device may receive signals corresponding to a user's EEG or movements using a gestural sensor and/or an EEG sensor.
Abstract: Systems and methods for controlling devices through gestures sensed via an earbud. The earbud can include a set of electrodes configured to contact particular anatomic locations on an individual's ear. Based on electrophysiologic signals sensed via the electrode assembly, the system can identify gestures being performed by the user and control the external device accordingly.
Type:
Grant
Filed:
March 6, 2023
Date of Patent:
June 11, 2024
Assignee:
NAQI LOGIX INC.
Inventors:
R K K Durga Rao Manchem, Sanandan Sudhir, Jaymin Oza, Prayas Rokde, David Segal
Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's brain waves or movements, the brain waves or movements corresponding to a series of directional intentions, the intentions defining at least one line pattern, a processor configured to process the at least one line pattern, each of said at least one line patterns associated with an action of the device, and output a control signal to the non-tactile device related to the action.
Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's EEG or movements, translate the EEG or movements into directional intentions, transmit the directional intentions to a secondary device, receive a command for one or more actions from the secondary device based on the transmitted directional intentions and output at least one control signal to the non-tactile device based on the received command for one or more actions. The non-tactile device may receive signals corresponding to a user's EEG or movements using a gestural sensor and/or an EEG sensor.
Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's EEG or movements, translate the EEG or movements into directional intentions, transmit the directional intentions to a secondary device, receive a command for one or more actions from the secondary device based on the transmitted directional intentions and output at least one control signal to the non-tactile device based on the received command for one or more actions. The non-tactile device may receive signals corresponding to a user's EEG or movements using a gestural sensor and/or an EEG sensor.
Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's EEG or movements, translate the EEG or movements into directional intentions, transmit the directional intentions to a secondary device, receive a command for one or more actions from the secondary device based on the transmitted directional intentions and output at least one control signal to the non-tactile device based on the received command for one or more actions. The non-tactile device may receive signals corresponding to a user's EEG or movements using a gestural sensor and/or an EEG sensor.
Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's brain waves or movements, the brain waves or movements corresponding to a series of directional intentions, the intentions defining at least one line pattern, a processor configured to process the at least one line pattern, each of said at least one line patterns associated with an action of the device, and output a control signal to the non-tactile device related to the action.
Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's EEG or movements, translate the EEG or movements into directional intentions, transmit the directional intentions to a secondary device, receive a command for one or more actions from the secondary device based on the transmitted directional intentions and output at least one control signal to the non-tactile device based on the received command for one or more actions. The non-tactile device may receive signals corresponding to a user's EEG or movements using a gestural sensor and/or an EEG sensor.
Abstract: A system and method for controlling a non-tactile device including a receiving device configured to receive signals corresponding to a user's brain waves or movements, the brain waves or movements corresponding to a series of directional intentions, the intentions defining at least one line pattern, a processor configured to process the at least one line pattern, each of said at least one line patterns associated with an action of the device, and output a control signal to the non-tactile device related to the action.