Patents Assigned to National Chiao Tung University
  • Patent number: 11013720
    Abstract: Disclosed herein is a ganetespib-containing particle, which includes an active ingredient selected from ganetespib, a pharmaceutically acceptable salt of ganetespib, and a combination thereof, and an amphiphilic chitosan-based carrier carrying the active ingredient. Also disclosed herein are a pharmaceutical composition including the ganetespib-containing particle, and use of such pharmaceutical composition in treating cancer.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: May 25, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Yan-Hwa Wu Lee, Dean-Mo Liu, Wei-Ting Huang, Ru-Tsun Mai, Yi-Hsin Chen
  • Patent number: 11015918
    Abstract: An optical displacement sensing system is provided. With configuration of an optical sensor disposed on a displacement platform and in cooperation with a broadband light source and an optical spectrum analyzer, when the displacement platform moves, the waveguide grating of the optical sensor is resonated and the reflected light provided with a resonance wavelength is formed. The waveguide grating has the plurality of grating periods, and when the displacement platform moves to a different position to make the broadband light source correspond to a different grating period, the position can correspond to the different resonance wavelength. Therefore, according to the aforementioned configuration, the position is determined according to the different resonance wavelength, instead of using an optical encoder; furthermore, the micrometer-scale or nanometer-scale displacement detection is achieved.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: May 25, 2021
    Assignee: National Chiao Tung University
    Inventors: Cheng-Sheng Huang, Yen-Chieh Wang
  • Patent number: 11017241
    Abstract: A people-flow analysis system includes an image source, a computing device, and a host. The image source captures a first image and a second image. The computing device is connected to the image source. The computing device identifies the first image according to a data set to generate a first detecting image. The first detecting image has a position box corresponding to a pedestrian in the first image. The computing device generates a tracking image according to the data set and a difference between the first detecting image and the second image. The tracking image has another position box corresponding to a pedestrian in the second image. The host is connected to the computing device and generates a people-flow list according to the first detecting image and the tracking image.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: May 25, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Bing-Fei Wu, Chun-Hsien Lin, Po-Wei Huang, Meng-Liang Chung
  • Patent number: 11018239
    Abstract: A semiconductor device includes a channel, source/drain structures, and a gate stack. The source/drain structures are on opposite sides of the channel. The gate stack is over the channel, and the gate stack includes a gate dielectric layer, a doped ferroelectric layer, and a gate electrode. The gate dielectric layer is over the channel. The doped ferroelectric layer is over the gate dielectric layer. The gate electrode is over the doped ferroelectric layer. A dopant concentration of the doped ferroelectric layer varies in a direction from the gate electrode toward the channel.
    Type: Grant
    Filed: April 13, 2019
    Date of Patent: May 25, 2021
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Pin-Shiang Chen, Sheng-Ting Fan, Chee-Wee Liu
  • Publication number: 20210147420
    Abstract: The present invention provides 11-arylcinnolino[2,3-f]phenanthridinium salt compounds and method for producing the same by highly regioselective synthesis of 11-phenylimino[2,3-f]phenanthridin-9-ium salts from 2-azobiaryls and alkenes under catalysis of palladium, through double oxidative C—H coupling of alkenes, to give the polycyclic cinnolinophenanthridinium salts in moderate yields. The reaction mechanism involves ortho C—H olefination of 2-azobiaryls by alkenes, intramolecular aza-Michael addition, ?-hydride elimination, electrophilic palladation followed by intramolecular C—H activation and reductive elimination. The prepared quaternary ammonium salts are candidate materials for solution-processable OLED and bioimaging materials.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 20, 2021
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Shih-Ching Chuang, Jayakumar Jayachandran
  • Patent number: 11009373
    Abstract: An optical encoding device includes a code disc, an optical signal generator, (K+1) optical sensors and an encoding circuit. The code disk has K gratings arranged in a row. The total width of the optical sensors is equal to the total width W of the gratings. The optical sensor receives the optical signal through the code disk. Each optical sensor converts the optical signal into a voltage signal and outputs the voltage signal. The encoding circuit receives and normalizes the voltage signals to generate (K+1) voltage values. During a period in which the code disk rotates by a distance of 2W/K, the encoding circuit compares the voltage values with a preset value to generate at least two binary codes. When K is odd, the preset value is 0.5, and when K is even, the preset value is 0.55. The present invention can increase an absolute row resolution of the code disc.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: May 18, 2021
    Assignee: National Chiao Tung University
    Inventors: Mang Ou-Yang, Yuan Ouyang, Tzu Min Chuang, Ren-Li Yang, Yung-Jhe Yan, Hou Chi Chiang
  • Patent number: 11012867
    Abstract: A method of cell placement includes choosing the ray-tracing channel matrices for the Nth iteration according to candidate cell locations of the Nth iteration and the user distributions, calculating fitness values for the Nth iteration based on the ray-tracing channel matrices, substituting the fitness values for the Nth iteration and corresponding candidate cell locations for the best fitness and best candidate cell locations in a total iterative process respectively if the fitness values for the Nth iteration are greater than or equal to multiple thresholds and the best fitness in a total iterative process, storing candidate cell locations of the Nth iteration, and verifies termination criteria, if termination criteria are not satisfied at the Nth iteration, generating the candidate cell locations of the N+1th iteration.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 18, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Ta-Sung Lee, Yu-Shan Chiu
  • Patent number: 11004659
    Abstract: A method of manufacturing an amorphous carbon thin film is provided. The method includes the following steps: providing a substrate in a reaction chamber; flowing a precursor and a carrier gas into the reaction chamber; and performing a PECVD method to deposit the amorphous carbon thin film on the substrate. Wherein, the precursor includes a compound having a C?N functional group.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: May 11, 2021
    Assignee: National Chiao Tung University
    Inventors: Jih-Perng Leu, Jui-Min Chang
  • Publication number: 20210119837
    Abstract: A baseband system includes: an estimation and compensation circuit estimating frequency-independent non-ideal effects based on an original IQ signal pair, and compensating the original IQ signal pair based on a result of the estimation to obtain a compensated IQ signal pair; a channel estimation and equalization circuit performing channel estimation and equalization based on the compensated IQ signal pair to obtain an equalized IQ signal pair; and a tracking and compensation circuit obtaining a result of tracking of residual quantities of the aforesaid non-ideal effects based on the equalized IQ signal pair, and compensating the equalized IQ signal pair based on the result of the tracking to obtain an output IQ signal pair.
    Type: Application
    Filed: June 8, 2020
    Publication date: April 22, 2021
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Zheng-Chun HUANG, Wei-Che LEE, Hung-Chih LIU, Chih-Wei JEN, Shyh-Jye JOU, Yu-Hwai TSENG
  • Publication number: 20210113179
    Abstract: Disclosed herein is a method of enhancing the accuracy and/or sensitivity of ultrasound imaging in detecting a tumor in a subject. The method comprises administering to the subject an effective amount of a nanoparticle prior to the application of ultrasound to the subject. According to certain embodiments of the present disclosure, the nanoparticle is a magnetic nanoparticle, for example, a gold, silver, or iron oxide nanoparticle. Also disclosed herein are methods of treating a tumor in a subject by detecting the tumor via ultrasound with the aid of a nanoparticle, and then administering to the subject an anti-cancer treatment based on the location of the tumor revealed by the ultrasound image.
    Type: Application
    Filed: October 19, 2020
    Publication date: April 22, 2021
    Applicants: Academia Sinica, National Chiao Tung University
    Inventors: Chung-Hsuan CHEN, Shok-Li NG, Yung-Chieh CHAN, Peter LAI, Michael HSIAO, Olga K KOSHELEVA, Nelson G. CHEN
  • Patent number: 10985070
    Abstract: A method for forming a nanodevice sensing chip includes forming nanodevices having a sensing region capable of producing localized Joule heating. Individual nanodevice is electrical-biased in a chemical vapor deposition (CVD) system or an atomic layer deposition (ALD) system enabling the sensing region of the nanodevice produce localized Joule heating and depositing sensing material only on this sensing region. A sensing chip is formed via nanodevices with sensing region of each nanodevice deposited various materials separately. The sensing chip is also functioned under device Joule self-heating to interact and detect the specific molecules.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 20, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Ru-Zheng Lin, Jeng-Tzong Sheu
  • Publication number: 20210108230
    Abstract: The present invention provides a carboxylated nanodiamond-mediated CRISPR-Cas9 delivery system for gene editing comprising nanodiamond (ND) particles as the carriers of CRISPR-Cas9 components designed to introduce the mutation in a given gene for repairing a tissue damage.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 15, 2021
    Applicants: Taipei Veterans General Hospital, National Chiao Tung University, National Cheng Kung University
    Inventors: Shih-Hwa CHIOU, Tien-Chun YANG, Chia-Ching CHANG, Yon-Hua TZENG
  • Patent number: 10978902
    Abstract: A wireless charging device includes a wireless charging transmitter transmitting a charging signal to a signal gain module to generate at least one gain signal. The signal gain module includes an insulation substrate with an upper surface thereof provided with a first conductive wire. The first conductive wire makes at least one turns arranged along the inner edge of the insulation substrate. The lower surface of the insulation substrate is provided with a second conductive wire whose position corresponds to the position of the first conductive wire. A connecting element is arranged between the first conductive wire and the second conductive wire, such that the first conductive wire is electrically connected to the second conductive wire through the connecting element. The present invention provides a charging signal with high intensity to avoid the low charging efficiency caused by deflection and too long a distance.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: April 13, 2021
    Assignee: National Chiao Tung University
    Inventors: Ming-Dou Ker, Yu-Ting Cheng, Kuan-Jung Chen, Wei-Ming Chen, Chung-Yu Wu
  • Patent number: 10971629
    Abstract: Structures and methods of forming self-aligned unsymmetric gate (SAUG) FinFET are provided. The SAUG FinFET structure has two different gate structures on opposite sides of each fin: a programming gate structure and a switching gate structure. The SAUG FinFET may be used as non-volatile memory (NVM) storage element that may be electrically programmed by trapping charges in the charge trapping dielectric (e.g., Si3N4) with appropriate bias on the control gate of the programming gate structure. The stored data may be sensed by sensing the channel current through the SAUG FinFET in response to a bias on the switching gate of the switching gate structure.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: April 6, 2021
    Assignees: Taiwan Semiconductor Manufacturing Company, Ltd., National Chiao Tung University
    Inventors: Chao-Hsin Chien, Yu-Che Chou, Chien-Wei Tsai, Chin-Ya Yi
  • Patent number: 10961325
    Abstract: An amphiphilic polymer, an amphiphilic polymer manufacturing method, use of an amphiphilic polymer as a contact lens material, and a contact lens material including the same are provided. The amphiphilic polymer includes amino-conjugated mono-HEMA (mHEMA-NH2) and amphiphilic chitosan bonded to the same. The amphiphilic polymer manufacturing method includes providing a mHEMA-NH2, providing an amphiphilic chitosan, and bonding the mHEMA-NH2 to the amphiphilic chitosan.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: March 30, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Yun-Ru Hsieh, Dean-Mo Liu, Yu-Cheng Jian
  • Patent number: 10947232
    Abstract: The present invention provides 11-arylcinnolino[2,3-f]phenanthridinium salt compounds and method for producing the same by highly regioselective synthesis of 11-phenylimino[2,3-f]phenanthridin-9-ium salts from 2-azobiaryls and alkenes under catalysis of palladium, through double oxidative C—H coupling of alkenes, to give the polycyclic cinnolinophenanthridinium salts in moderate yields. The reaction mechanism involves ortho C—H olefination of 2-azobiaryls by alkenes, intramolecular aza-Michael addition, ?-hydride elimination, electrophilic palladation followed by intramolecular C—H activation and reductive elimination. The prepared quaternary ammonium salts are candidate materials for solution-processable OLED and bioimaging materials.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: March 16, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Shih-Ching Chuang, Jayakumar Jayachandran
  • Patent number: 10944024
    Abstract: A method for manufacturing micro light-emitting diode chips includes the steps of: providing a to-be-divided light-emitting component, which includes a metal substrate and a plurality of micro light-emitting diode dies disposed on the metal substrate to permit the metal substrate to define a to-be-etched region among the micro light-emitting diode dies; and etching the metal substrate to remove the to-be-etched region so as to divide the light-emitting component into a plurality of the micro light-emitting diode chips.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: March 9, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Ray-Hua Horng, Hsiang-An Feng, Cheng-Yu Chung, Chia-Wei Tu, Fu-Gow Tarntair
  • Publication number: 20210061799
    Abstract: The present invention provides 11-arylcinnolino[2,3-f]phenanthridinium salt compounds and method for producing the same by highly regioselective synthesis of 11-phenylimino[2,3-f]phenanthridin-9-ium salts from 2-azobiaryls and alkenes under catalysis of palladium, through double oxidative C—H coupling of alkenes, to give the polycyclic cinnolinophenanthridinium salts in moderate yields. The reaction mechanism involves ortho C—H olefination of 2-azobiaryls by alkenes, intramolecular aza-Michael addition, ?-hydride elimination, electrophilic palladation followed by intramolecular C—H activation and reductive elimination. The prepared quaternary ammonium salts are candidate materials for solution-processable OLED and bioimaging materials.
    Type: Application
    Filed: October 25, 2019
    Publication date: March 4, 2021
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Shih-Ching Chuang, Jayakumar Jayachandran
  • Patent number: 10930959
    Abstract: A fuel cell system includes a comparator, a signal tracking controller, a first load distribution controller, a first loop gain controller, a first adder, a first PWM controller, a first fuel cell and power converter, a second load distribution controller, a second loop gain controller, a second adder, a second PWM controller, and a second fuel cell and power converter. According to the proposed fuel cell parallel system, each fuel cell connected in parallel can have a different output voltage, but the voltage at the load side can be maintained. In addition, the power output ratio of each fuel cell can be controlled under the nominal load conditions and the load varied.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: February 23, 2021
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Tsung-Lin Chen, Chien-Chang Wu
  • Patent number: 10930496
    Abstract: A method for fabricating heteroepitaxial semiconductor material on a mica sheet is disclosed. Firstly, a mica substrate is provided. Then, at least one semiconductor film is deposited on the mica substrate to form a flexible substrate whose flexibility is applied to various applications, such as wearable devices, portable photoelectric equipment, or improving the speed and bandwidth of commercial and military systems, such that the flexible substrate has the competitiveness in the market.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: February 23, 2021
    Assignee: National Chiao Tung University
    Inventors: Yi-Chia Chou, Wan-Jung Lo, Ying-Hao Chu