Patents Assigned to National Institute for Materials Science
  • Publication number: 20190083415
    Abstract: Provided is a sustained release sheet that includes a drug for treating nerve injury, wherein the sheet is applied to a nerve injury site, can maintain a high concentration of the drug over a long period, and promotes nerve regeneration without stimulating the nerves, even when the sheet is implanted in the periphery of the nerve injury site. Also provided is a production method for the sheet. This sustained drug release sheet for treating nerve injury is a sheet comprising a non-woven fabric that is formed from nanofibers each containing a drug such as vitamin B12 and a biocompatible polymer such as a biodegradable aliphatic polyester, and is implanted in the periphery of the nerve injury site to promote nerve regeneration.
    Type: Application
    Filed: March 6, 2017
    Publication date: March 21, 2019
    Applicants: OSAKA UNIVERSITY, NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NIPPON ZOKI PHARMACEUTICAL CO., LTD.
    Inventors: Hiroyuki TANAKA, Kiyoshi OKADA, Hideki YOSHIKAWA, Koji SUZUKI, Mitsuhiro EBARA
  • Patent number: 10232321
    Abstract: A blood purification membrane capable of adsorbing creatinine which is a uremic toxin in the blood and purifying the blood, the blood purification membrane including fibers and particles adhered to the aforementioned fibers, wherein the aforementioned fibers are composed of a polymer insoluble in water, the aforementioned particles contain SiO2 and Al2O3, and pores capable of incorporating at least a portion of the aforementioned uremic toxin are provided in the aforementioned particles.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: March 19, 2019
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Mitsuhiro Ebara, Koki Namekawa, Takao Aoyagi
  • Publication number: 20190078186
    Abstract: In order to improve the ductility or formability of a magnesium alloy, addition of rare earth elements or refinement of grain size is often used. However, conventional additional elements inhibit the action of grain boundary sliding for complementing plastic deformation. Therefore, it is required to search for additional elements that act to facilitate the grain boundary sliding not only at a conventional deformation speed but also in a higher speed range while maintaining a microstructure for activating non-basal dislocation. The present invention is to provide a wrought processed Mg-based alloy having excellent ductility at room temperature, which consists of 0.25 mass % or more to 9 mass % or less of Bi, and a balance of Mg and inevitable components, and is characterized by having an average grain size of an Mg parent phase after solution treatment and hot plastic working after casting of 20 ?m or less.
    Type: Application
    Filed: March 8, 2017
    Publication date: March 14, 2019
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hidetoshi SOMEKAWA, Alok SHINGH, Tadanobu INOUE
  • Patent number: 10214689
    Abstract: Provided are a fluorescent material including a high light emission intensity and a light emitting device using the same. The present fluorescent material includes at least an A element, a M element, a D element, a E element, and an X element, wherein the A element is at least one element selected from the group consisting of Sr, Mg, Ca, and Ba; the M element is at least one element selected from the group consisting of Eu, Mn, Ce, Pr, Nd, Sm, Tb, Dy, and Yb; the D element is at least one element selected from the group consisting of Si, Ge, Sn, Ti, Zr, and Hf, the E element is at least one element selected from the group consisting of Al, B, Ga, In, Sc, Y, and La; the X element is at least one element selected from the group consisting of O, N, and F; and a molar ratio of the M element to the sum of the A element and the M element [M/(A+M)] is 0.06 or less.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 26, 2019
    Assignees: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NICHIA CORPORATION
    Inventors: Naoto Hirosaki, Takashi Takeda, Shiro Funahashi, Takayuki Shinohara, Shoji Hosokawa
  • Patent number: 10208360
    Abstract: Provided is a hot-forged TiAl-based alloy of the present invention containing 40 to 45 atom % of Al and additive elements in the following composition ratio (A) or (B), and the balance Ti with inevitable impurities: (A) Nb: 7 to 9 atom %, Cr: 0.4 to 4.0 atom %, Si: 0.3 to 1.0 atom %, and C: 0.3 to 1.0 atom %; and (B) at least one of Cr: 0.1 to 2.0 atom %, Mo: 0.1 to 2.0 atom %, Mn: 0.1 to 4.0 atom %, Nb: 0.1 to 8.0 atom %, and V: 0.1 to 8.0 atom %. The TiAl-based alloy is characterized by having a fine structure of densely arranged lamella grains that are laminated alternately with a Ti3Al phase (?2-phase) and a TiAl phase (?-phase) and have an average grain size of 1 to 200 ?m.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: February 19, 2019
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventor: Toshimitsu Tetsui
  • Patent number: 10205091
    Abstract: To provide a key monocrystalline magnetoresistance element necessary for accomplishing mass production and cost reduction for applying a monocrystalline giant magnetoresistance element using a Heusler alloy to practical devices. A monocrystalline magnetoresistance element of the present invention includes a silicon substrate 11, a base layer 12 having a B2 structure laminated on the silicon substrate 11, a first non-magnetic layer 13 laminated on the base layer 12 having a B2 structure, and a giant magnetoresistance effect layer 17 having at least one laminate layer including a lower ferromagnetic layer 14, an upper ferromagnetic layer 16, and a second non-magnetic layer 15 disposed between the lower ferromagnetic layer 14 and the upper ferromagnetic layer 16.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: February 12, 2019
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jiamin Chen, Yuya Sakuraba, Jun Liu, Hiroaki Sukegawa, Kazuhiro Hono
  • Patent number: 10199063
    Abstract: Disclosed is a perpendicularly magnetized film structure that uses a highly heat resistant underlayer film on which a cubic or tetragonal perpendicularly magnetized film can grow with high quality, the structure comprising any one substrate (5) of a cubic single crystal substrate having a (001) plane, or a substrate having a cubic oriented film that grows to have the (001) plane; an underlayer (6) formed on the substrate (5) from a thin film of a metal having an hcp structure, such as Ru or Re, in which the [0001] direction of the thin metal film forms an angle in the range of 42° to 54° with respect to the <001> direction or the (001) orientation of the substrate (5); and a perpendicularly magnetized layer (7) located on the metal underlayer (6) and formed from a cubic material selected from the group consisting of a Co-based Heusler alloy, a cobalt-iron (CoFe) alloy having a bcc structure, and the like, as a constituent material, and grown to have the (001) plane.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: February 5, 2019
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hiroaki Sukegawa, Zhenchao Wen, Seiji Mitani, Koichiro Inomata, Takao Furubayashi, Jason Paul Hadorn, Tadakatsu Ohkubo, Kazuhiro Hono, Jungwoo Koo
  • Patent number: 10189112
    Abstract: A welding equipment for metallic materials capable of performing heat treatment such as tempering based on partial heating in spot welding is provided. The welding equipment sandwiches metallic materials with a pair of electrodes, and heats different regions of the metallic materials by energization, with the pair of electrodes maintained at the same position with respect to the metallic materials. The welding equipment includes a first heating means connected to the pair of electrodes for heating and welding the internal region of the circle defined by projecting the cross-sectional area of the axis of the electrodes on the metallic materials by applying power having a low first frequency, a second heating means for heating a ring-shaped region along the circle by applying power having a second frequency that is higher than the first frequency, and an energization control unit for independently controlling the first and the second heating means.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 29, 2019
    Assignees: NETUREN CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takahiko Kanai, Munehisa Hatta, Fumiaki Ikuta, Kazuhiro Kawasaki, Eizaburo Nakanishi, Tsuyoshi Yoshida, Kotobu Nagai, Masao Hayakawa, Takehiko Itagaki
  • Patent number: 10186596
    Abstract: A semiconductor device according to an embodiment includes a silicon carbide layer, a gate electrode, and a silicon oxide layer disposed between the silicon carbide layer and the gate electrode, a number of single bonds between carbon atoms being larger than that of double bonds between carbon atoms in the silicon oxide layer.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: January 22, 2019
    Assignees: Kabushiki Kaisha Toshiba, National Institute for Materials Science
    Inventors: Tatsuo Shimizu, Takahisa Ohno, Tomoaki Kaneko, Takahiro Yamasaki, Nobuo Tajima, Jun Nara
  • Publication number: 20190017549
    Abstract: ZnO sputtering is performed while a rolling body is housed in a basket made of a metal wire and is rotated. By setting a ratio of a mesh size of the basket to a diameter of the rolling body in a range of 40 to 95%, fine and uniform ZnO coating can be formed on a surface of the rolling body. By using the rolling body with ZnO coating prepared in this manner in a bearing which is rotated at high speed in a high-load state, a friction coefficient can significantly be lowered in comparison with a case of no coating.
    Type: Application
    Filed: August 25, 2016
    Publication date: January 17, 2019
    Applicant: National Institute for Materials Science
    Inventors: Masahiro GOTO, Michiko SASAKI, Akira KASAHARA, Masahiro TOSA
  • Publication number: 20190010594
    Abstract: A method for recycling a Ni-based single crystal superalloy part or unidirectionally solidified superalloy part provided with a thermal barrier coating containing at least a ceramic on a surface of a Ni-based single crystal superalloy substrate or Ni-based unidirectionally solidified superalloy substrate, in which the method including the steps of: melting and desulfurizing a Ni-based single crystal superalloy part or Ni-based unidirectionally solidified superalloy part at a temperature of the melting point or more of the Ni-based single crystal superalloy or Ni-based unidirectionally solidified superalloy and less than the melting point of the ceramic; heating a casting mold for a recycled Ni-based single crystal superalloy part or casting mold for a recycled Ni-based unidirectionally solidified superalloy part to a temperature of the melting point or more of the Ni-based single crystal superalloy or Ni-based unidirectionally solidified superalloy; pouring the desulfurized melted Ni-based single crystal supe
    Type: Application
    Filed: May 30, 2016
    Publication date: January 10, 2019
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hiroshi HARADA, Kyoko KAWAGISHI, Toshiharu KOBAYASHI, Tadaharu YOKOKAWA, Makoto OSAWA, Michinari YUYAMA, Shinsuke SUZUKI, Yuichiro JOH, Satoshi UTADA
  • Patent number: 10177383
    Abstract: A nano-coating material, capable of being bonded to the surface of a metal or an alloy substrate, the nano-coating material includes a compound having, in a polymer main chain, (A) a first side chain or a terminal, each having a binding group containing a benzene ring having at least one pair of adjacent hydroxyl groups; and (B) a functional second side chain.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: January 8, 2019
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Masanobu Naito, Debabrata Payra, Sachiko Hiromoto, Alok Singh
  • Patent number: 10161839
    Abstract: An apparatus for measuring for measuring coefficient of restitution which is capable of reducing a mass effect and performing tests in free directions, is disclosed. The apparatus for measuring coefficient of restitution includes a holder for holding a spherical indenter, an ejection mechanism configured to eject the indenter held by the holder from the holder to a specimen, a speed measuring unit configured to measure an impact speed that is a speed of the indenter before the indenter impacts against the specimen, and a rebound speed that is a speed of the indenter after the indenter is rebounded from the specimen; and an arithmetic unit configured to calculate a coefficient of restitution that is a ratio of the rebound speed to the impact speed.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: December 25, 2018
    Assignees: YAMAMOTO SCIENTIFIC TOOL LABORATORY CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takashi Yamamoto, Kensuke Miyahara, Tsutomu Obata, Koji Kadogawa
  • Publication number: 20180356388
    Abstract: Provided is a sensor which enables detection/identification of various types of fuels for automobiles by using simple devices. According to the present invention, high-octane gas, regular gas, diesel oil, heating oil, gasoline laced with heating oil, and the like can be clearly identified without using a large-scale analysis such as gas chromatography or mass spectroscopy by using a sensor having a structure in which a surface of a sensor body which detects a surface stress or the like is coated with particles modified with a hydrocarbon group such as an alkyl group.
    Type: Application
    Filed: November 14, 2016
    Publication date: December 13, 2018
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kota SHIBA, Genki YOSHIKAWA, Gaku IMAMURA
  • Patent number: 10121633
    Abstract: When an electrode (29) such as a grid applied with a negative voltage is installed in front of an objective lens (23), low energy electrons among secondary electrons (25) generated from a sample (24) by an electron beam or the like is reflected by the electrode to come into a detector (22) installed in the sample (24) side, while electrons of higher energy are not detected, since they are not reflected by the electrode. Accordingly, since only the electrons of lower energy of the secondary electrons can be detected by discriminating the secondary electrons by the energy, it is possible to obtain a detection signal, e.g., rich in the information on the surface state of the sample.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: November 6, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takashi Sekiguchi, Hideo Iwai
  • Patent number: 10118995
    Abstract: The present invention relates to an organic/heterometallic hybrid polymer including a plurality of organometal complexes and a plurality of transition metals, the organic/heterometallic hybrid polymer, wherein the plurality of organometal complexes are linked in a linear manner by sandwiching each of the plurality of transition metals therebetween, the organometal complexes include two ligands each having a terpyridyl group and one connector having Ru(dppe)2 and two ethynylene groups, and the two ligands are linked by the connector, so that a nitrogen atom at position 1? of the terpyridyl group is directed toward the terminal side of the molecule of the organometal complex, and the terpyridyl groups of at least two different organometal complexes of the plurality of organometal complexes are bound to one of the transition metals through a coordinate bond, thereby linking the plurality of organometal complexes while sandwiching the plurality of transition metals alternately therebetween.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: November 6, 2018
    Assignee: National Institute of Materials Science
    Inventors: Masayoshi Higuchi, Takashi Sato
  • Patent number: 10100383
    Abstract: Provided is martensitic steel which is used in structures such as buildings and bridges, and automotive underbody, and mechanical parts such as gears and is more suitably used for steel products such as thick steel sheets, shape steel, a deformed steel bar, steel bars, or steel wires. The martensitic steel has a microstructure of a martensite structure containing a chemical composition, by mass %, of Si: 1.0 to 3.5%, Mn: 4.5 to 5.5%, Al: 0.001 to 0.080%, Nb: 0.045% or less, and C having an amount in which the following regression equation (1) is satisfied and the maximum stress (TS) becomes 1800 to 2160 MPa, a balance being Fe and inevitable impurities of: P: 0.030% or less, S: 0.020% or less, and N: 0.010% or less, the martensitic steel having total elongation of 13 to 15%. TS(maximum stress) [MPa]=4000×C[mass %]+1050??(1).
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: October 16, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Toshihiro Hanamura, Shiro Torizuka
  • Patent number: 10090090
    Abstract: The invention provides a nanocomposite magnet, which has achieved high coercive force and high residual magnetization. The magnet is a non-ferromagnetic phase that is intercalated between a hard magnetic phase with a rare-earth magnet composition and a soft magnetic phase, wherein the non-ferromagnetic phase reacts with neither the hard nor soft magnetic phase. A hard magnetic phase contains Nd2Fe14B, a soft magnetic phase contains Fe or Fe2Co, and a non-ferromagnetic phase contains Ta. The thickness of the non-ferromagnetic phase containing Ta is 5 nm or less, and the thickness of the soft magnetic phase containing Fe or Fe2Co is 20 nm or less. Nd, or Pr, or an alloy of Nd and any one of Cu, Ag, Al, Ga, and Pr, or an alloy of Pr and any one of Cu, Ag, Al, and Ga is diffused into a grain boundary phase of the hard magnetic phase of Nd2Fe14B.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: October 2, 2018
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hidefumi Kishimoto, Noritsugu Sakuma, Masao Yano, Weibin Cui, Yukiko Takahashi, Kazuhiro Hono
  • Publication number: 20180272028
    Abstract: A surgical sealant comprising a first agent containing a hydrophobically-modified gelatin derived from a cold-water fish, and a second agent containing a water-soluble molecule for crosslinking, wherein the water-soluble molecule for crosslinking is at least one kind selected from the group consisting of poly acids and acid anhydrides having two or more active ester groups, and aldehyde compounds having two or more aldehyde groups, the hydrophobically-modified gelatin derived from a cold-water fish is a gelatin in which at least a part of amino groups of side chains of a gelatin derived from a cold-water fish has been substituted by hydrophobic groups, and the hydrophobic groups are linear chain aliphatic groups each having 8 to 18 carbon atoms, with a substitution rate (number of moles of hydrophobic groups/(total number of moles of hydrophobic groups and reactive amino groups in gelatin)×100) of 3 to 20 mol %.
    Type: Application
    Filed: January 19, 2016
    Publication date: September 27, 2018
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventor: Tetsushi TAGUCHI
  • Patent number: 10072207
    Abstract: Phosphors include a CaAlSiN3 family crystal phase, wherein the CaAlSiN3 family crystal phase comprises at least one element selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 11, 2018
    Assignees: MITSUBISHI CHEMICAL CORPORATION, NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NICHIA CORPORATION, CITIZEN ELECTRONICS CO. LTD.
    Inventors: Naoto Hirosaki, Kyota Ueda, Hajime Yamamoto