Patents Assigned to National Institute for Materials Science
  • Publication number: 20180356388
    Abstract: Provided is a sensor which enables detection/identification of various types of fuels for automobiles by using simple devices. According to the present invention, high-octane gas, regular gas, diesel oil, heating oil, gasoline laced with heating oil, and the like can be clearly identified without using a large-scale analysis such as gas chromatography or mass spectroscopy by using a sensor having a structure in which a surface of a sensor body which detects a surface stress or the like is coated with particles modified with a hydrocarbon group such as an alkyl group.
    Type: Application
    Filed: November 14, 2016
    Publication date: December 13, 2018
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kota SHIBA, Genki YOSHIKAWA, Gaku IMAMURA
  • Patent number: 10121633
    Abstract: When an electrode (29) such as a grid applied with a negative voltage is installed in front of an objective lens (23), low energy electrons among secondary electrons (25) generated from a sample (24) by an electron beam or the like is reflected by the electrode to come into a detector (22) installed in the sample (24) side, while electrons of higher energy are not detected, since they are not reflected by the electrode. Accordingly, since only the electrons of lower energy of the secondary electrons can be detected by discriminating the secondary electrons by the energy, it is possible to obtain a detection signal, e.g., rich in the information on the surface state of the sample.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: November 6, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takashi Sekiguchi, Hideo Iwai
  • Patent number: 10118995
    Abstract: The present invention relates to an organic/heterometallic hybrid polymer including a plurality of organometal complexes and a plurality of transition metals, the organic/heterometallic hybrid polymer, wherein the plurality of organometal complexes are linked in a linear manner by sandwiching each of the plurality of transition metals therebetween, the organometal complexes include two ligands each having a terpyridyl group and one connector having Ru(dppe)2 and two ethynylene groups, and the two ligands are linked by the connector, so that a nitrogen atom at position 1? of the terpyridyl group is directed toward the terminal side of the molecule of the organometal complex, and the terpyridyl groups of at least two different organometal complexes of the plurality of organometal complexes are bound to one of the transition metals through a coordinate bond, thereby linking the plurality of organometal complexes while sandwiching the plurality of transition metals alternately therebetween.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: November 6, 2018
    Assignee: National Institute of Materials Science
    Inventors: Masayoshi Higuchi, Takashi Sato
  • Patent number: 10100383
    Abstract: Provided is martensitic steel which is used in structures such as buildings and bridges, and automotive underbody, and mechanical parts such as gears and is more suitably used for steel products such as thick steel sheets, shape steel, a deformed steel bar, steel bars, or steel wires. The martensitic steel has a microstructure of a martensite structure containing a chemical composition, by mass %, of Si: 1.0 to 3.5%, Mn: 4.5 to 5.5%, Al: 0.001 to 0.080%, Nb: 0.045% or less, and C having an amount in which the following regression equation (1) is satisfied and the maximum stress (TS) becomes 1800 to 2160 MPa, a balance being Fe and inevitable impurities of: P: 0.030% or less, S: 0.020% or less, and N: 0.010% or less, the martensitic steel having total elongation of 13 to 15%. TS(maximum stress) [MPa]=4000×C[mass %]+1050??(1).
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: October 16, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Toshihiro Hanamura, Shiro Torizuka
  • Patent number: 10090090
    Abstract: The invention provides a nanocomposite magnet, which has achieved high coercive force and high residual magnetization. The magnet is a non-ferromagnetic phase that is intercalated between a hard magnetic phase with a rare-earth magnet composition and a soft magnetic phase, wherein the non-ferromagnetic phase reacts with neither the hard nor soft magnetic phase. A hard magnetic phase contains Nd2Fe14B, a soft magnetic phase contains Fe or Fe2Co, and a non-ferromagnetic phase contains Ta. The thickness of the non-ferromagnetic phase containing Ta is 5 nm or less, and the thickness of the soft magnetic phase containing Fe or Fe2Co is 20 nm or less. Nd, or Pr, or an alloy of Nd and any one of Cu, Ag, Al, Ga, and Pr, or an alloy of Pr and any one of Cu, Ag, Al, and Ga is diffused into a grain boundary phase of the hard magnetic phase of Nd2Fe14B.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: October 2, 2018
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Hidefumi Kishimoto, Noritsugu Sakuma, Masao Yano, Weibin Cui, Yukiko Takahashi, Kazuhiro Hono
  • Publication number: 20180272028
    Abstract: A surgical sealant comprising a first agent containing a hydrophobically-modified gelatin derived from a cold-water fish, and a second agent containing a water-soluble molecule for crosslinking, wherein the water-soluble molecule for crosslinking is at least one kind selected from the group consisting of poly acids and acid anhydrides having two or more active ester groups, and aldehyde compounds having two or more aldehyde groups, the hydrophobically-modified gelatin derived from a cold-water fish is a gelatin in which at least a part of amino groups of side chains of a gelatin derived from a cold-water fish has been substituted by hydrophobic groups, and the hydrophobic groups are linear chain aliphatic groups each having 8 to 18 carbon atoms, with a substitution rate (number of moles of hydrophobic groups/(total number of moles of hydrophobic groups and reactive amino groups in gelatin)×100) of 3 to 20 mol %.
    Type: Application
    Filed: January 19, 2016
    Publication date: September 27, 2018
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventor: Tetsushi TAGUCHI
  • Patent number: 10072207
    Abstract: Phosphors include a CaAlSiN3 family crystal phase, wherein the CaAlSiN3 family crystal phase comprises at least one element selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 11, 2018
    Assignees: MITSUBISHI CHEMICAL CORPORATION, NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NICHIA CORPORATION, CITIZEN ELECTRONICS CO. LTD.
    Inventors: Naoto Hirosaki, Kyota Ueda, Hajime Yamamoto
  • Patent number: 10067270
    Abstract: The present invention relates to an electromagnetic wave absorbing/radiating material which includes: a conductor; and a plurality of conductor discs disposed in an array above the surface of the conductor or a perforated conductor layer with a plurality of holes defined in an array above the surface of the conductor.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: September 4, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Tadaaki Nagao, Thang Duy Dao, Takahiro Yokoyama, Satoshi Ishii
  • Patent number: 10064973
    Abstract: There is provided a tissue adhesive to be applied to a tissue by mixing an adhesive component including an aqueous solution of a fish-derived gelatin with a curative component including an aqueous solution of a water-soluble crosslinking reagent, wherein the water-soluble crosslinking reagent has an amide linkage or an ethylene glycol unit or a sugar chain in the molecular main chain thereof and has two or more of an active ester group or an acid anhydride or an aldehyde group.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: September 4, 2018
    Assignee: National Institute for Materials Science
    Inventor: Tetsushi Taguchi
  • Publication number: 20180233899
    Abstract: A superconducting magnet device including a superconducting coil formed of a high-temperature superconducting wire, a power supply which supplies current to the superconducting coil, and a protector capable of forming a short-circuit path which short-circuits both ends of the superconducting coil to each other is installed. Current is made to flow from the power supply to the superconducting coil in a superconducting state, and the superconducting coil thereby generates a magnetic field. After the magnetic field is generated, when an abnormality of the superconducting magnet device is detected, or when the power supply and the superconducting coil are disconnected from each other, the short-circuit path is formed by the protector.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Applicants: RIKEN, National Institute for Materials Science
    Inventors: Masato TAKAHASHI, Hideaki MAEDA, Kenjiro HASHI, Gen NISHIJIMA, Shinji MATSUMOTO, Takashi NOGUCHI, Tadashi SHIMIZU
  • Patent number: 10043598
    Abstract: A process of producing a conducting material suitable for being filled in TSVs for LSI chip 3D package, etc. includes that a solution containing a monomer that provides a conducting polymer, anions, and metal ions such as Ag+ or Cu2+ is irradiated with ultraviolet radiation or light having the energy necessary for exciting electrons up to an energy level capable of reducing the metal ions to precipitate a conducting polymer/metal composite. This enables an electrical conductor of high electrical conductivity to be precipitated faster than could be achieved by conventional processes.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: August 7, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jin Kawakita, Toyohiro Chikyo
  • Patent number: 10026585
    Abstract: The emitter of the present invention includes a nanowire. The nanowire is formed from a hafnium carbide (HfC) single crystal, and at least an end portion of the hafnium carbide single crystal, from which electrons are to be emitted, is covered with hafnium oxide (HfO2). In the emitter, the thickness of the hafnium oxide may be 1 nm to 20 nm.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: July 17, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jie Tang, Jinshi Yuan, Han Zhang, Luchang Qin
  • Patent number: 10026989
    Abstract: An Object of the invention is to obtain an all solid lithium battery having an excellent output performance. To achieve the object, a sulfide based solid electrolyte is used as an electrolyte; an oxide containing lithium, a metal element that acts as a redox couple, and a metal element that forms an electron-insulating oxide is used as a cathode active material; and the concentration of the metal element that forms the electron-insulating oxide on the surface of the cathode active material (oxide) that is in contact with the sulfide solid electrolyte is made high.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: July 17, 2018
    Assignees: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazunori Takada, Xiaoxiong Xu, Tsuyoshi Ohnishi, Isao Sakaguchi, Ken Watanabe, Yasushi Tsuchida, Yukiyoshi Ueno, Koji Kawamoto
  • Patent number: 10017387
    Abstract: A boron nitride fine particle has low major diameter/thickness (aspect) ratio, high purity and high crystallinity, and also has an average particle diameter of 0.05 to 2.0 ?m, a graphitization index of 3 or less, and a total oxygen content of 0.20% by mass or less, with an average value of a major diameter/thickness ratio of scaly particles being 6.0 or less. A method of producing a boron nitride fine particle includes introducing ammonia and an alkoxide borate at an ammonia/alkoxide borate molar ratio of 1 to 5 in a reaction vessel in an inert gas atmosphere for heating at 800 to 1,350° C. within 30 seconds thereby obtaining a boron nitride precursor, and then heating the boron nitride precursor at 1,650 to 2,200° C. for at least 0.5 hour in an inert gas atmosphere.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: July 10, 2018
    Assignees: DENKA COMPANY LIMITED, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Fumihiro Kurokawa, Seitaro Kobayashi, Takashi Kawasaki, Go Takeda, Yoshio Bando, Dmitri Golberg
  • Patent number: 10017386
    Abstract: A spherical boron nitride fine particle suited for use as a highly thermoconductive filler or the like has an average particle diameter of 0.01 to 1.0 ?m, an orientation index of 1 to 15, a boron nitride purity of 98.0% by mass or greater, and an average circularity of 0.80 or greater. A method of producing a spherical boron nitride fine particle includes reacting ammonia with an alkoxide borate at an ammonia/alkoxide borate molar ratio of 1 to 10 in an inert gas stream at 750° C. or higher within 30 seconds, then applying heat treatment to a reaction product in an atmosphere of ammonia gas or a mixed gas of ammonia gas and an inert gas at 1,000 to 1,600° C. for at least 1 hour, and further firing the reaction product in an inert gas atmosphere at 1,800 to 2,200° C. for at least 0.5 hour.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: July 10, 2018
    Assignees: DENKA COMPANY LIMITED, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Fumihiro Kurokawa, Seitaro Kobayashi, Takashi Kawasaki, Go Takeda, Yoshio Bando, Dmitri Golberg
  • Patent number: 10014126
    Abstract: As an object to provide a lithium-ion supercapacitor having a high energy density and a high power density, capable of being charged and discharged many times, and having a long product life, there is provided a lithium-ion supercapacitor using a graphene/CNT composite electrode, the lithium-ion supercapacitor including: an anode; a cathode that is arranged to be separated from the anode; and a lithium ion electrolytic solution that fills in a space between the anode and the cathode, wherein either or both of the cathode and the anode are formed by a graphene/CNT composite, and a CNT concentration in the graphene/CNT composite is 17 wt % or more and 33 wt % or less.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: July 3, 2018
    Assignee: National Institute for Materials Science
    Inventors: Jie Tang, Faxiang Qin, Luchang Qin
  • Publication number: 20180171223
    Abstract: Provided are a fluorescent material having a high light emission intensity, a method for producing the same, and a light emitting device using the same. The present fluorescent material includes a composition represented by formula (I): SiuEuvAlwOxNy, wherein when the sum of a parameter u and a parameter w is taken as 13, parameters u, v, w, x, and y in the formula (I) satisfy the following formulae (1) to (5). 2.77?u?2.88??(1) 0.04?v?0.08??(2) 10.12?w?10.23??(3) 0.42?x?0.95??(4) 12.89?y?13.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Applicants: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NICHIA CORPORATION
    Inventors: Naoto HIROSAKI, Takayuki SHINOHARA, Shoji HOSOKAWA
  • Publication number: 20180170811
    Abstract: The present invention relates to an oxidation-induced highly-functional self-healing ceramic composition, a method for producing the ceramic composition, a use of the ceramic composition and a method for achieving the enhancement of the functionality of the ceramic composition, by focusing on a repairing stage and a remodeling state in a self-healing process and by carrying out elemental and structural designing of an oxidation-induced self-healing ceramic composition for the purpose of speeding up these stages.
    Type: Application
    Filed: June 13, 2016
    Publication date: June 21, 2018
    Applicants: National Institute for Materials Science, National University Corporation YOKOHAMA National University
    Inventors: Toshio OSADA, Kiichi KAMODA, Toru HARA, Masanori MITOME, Taichi ABE, Takahito OHMURA, Wataru NAKAO
  • Publication number: 20180171222
    Abstract: Provided are a fluorescent material including a high light emission intensity and a light emitting device using the same. The present fluorescent material includes at least an A element, a M element, a D element, a E element, and an X element, wherein the A element is at least one element selected from the group consisting of Sr, Mg, Ca, and Ba; the M element is at least one element selected from the group consisting of Eu, Mn, Ce, Pr, Nd, Sm, Tb, Dy, and Yb; the D element is at least one element selected from the group consisting of Si, Ge, Sn, Ti, Zr, and Hf, the E element is at least one element selected from the group consisting of Al, B, Ga, In, Sc, Y, and La; the X element is at least one element selected from the group consisting of O, N, and F; and a molar ratio of the M element to the sum of the A element and the M element [M/(A+M)] is 0.06 or less.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Applicants: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NICHIA CORPORATION
    Inventors: Naoto HIROSAKI, Takashi TAKEDA, Shiro FUNAHASHI, Takayuki SHINOHARA, Shoji HOSOKAWA
  • Publication number: 20180175281
    Abstract: A piezoelectric material for a combustion pressure sensor, a method for producing the piezoelectric material, and a combustion pressure sensor using the piezoelectric material are provided. The piezoelectric material of the present invention includes a single crystal containing Ca, Ta, an element M (M is Al or Ga), Si, and O, the single crystal has the same crystal structure as the crystal structure of langasite represented by La3Ga5SiO14, and at least the content of the element M is insufficient for the stoichiometric composition represented by Ca3TaM3Si2O14. Preferably, in a case where the element M is Ga, each content of the Ca and the Si is excessive for the stoichiometric composition, and in a case where the element M is Al, the content of the Ca is excessive for the stoichiometric composition, and the content of the Ta is insufficient for the stoichiometric composition.
    Type: Application
    Filed: June 1, 2016
    Publication date: June 21, 2018
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kiyoshi SHIMAMURA, Encarnacion Antonia GARCIA VILLORA, Isao SAKAGUCHI, Naoki OHASHI