Patents Assigned to National Institute for Materials Science
  • Patent number: 11655416
    Abstract: A phosphor having a favorable emission peak wavelength, narrow full width at half maximum, and/or high emission intensity is provided. Additionally, a light-emitting device, an illumination device, an image display device, and/or an indicator lamp for a vehicle having favorable color rendering, color reproducibility and/or favorable conversion efficiency are provided. The present invention relates to a phosphor including a crystal phase having a composition represented by a specific formula, and having a minimum reflectance of 20% or more in a specific wavelength region, in which the specific wavelength region is from the emission peak wavelength of the phosphor to 800 nm, and a light-emitting device comprising the phosphor.
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: May 23, 2023
    Assignees: Mitsubishi Chemical Corporation, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Tomoyuki Kurushima, Yuhei Inata, Naoto Hirosaki
  • Publication number: 20230147626
    Abstract: An object of the present invention is to make it possible to easily evaluate silage fermentation quality on site or the like. In one embodiment of the present invention, a gas generated from silage is applied to a surface stress sensor, and the amount of either one of organic acids and nitrogen-containing compounds contained in the silage is determined. The surface stress sensor can detect trace components in a gas by a simple device configuration and in simple procedures. Therefore, by utilizing the fact that relationship between the content of these components and the fermentation quality is known, the evaluation of fermentation quality can be easily realized by the above measurement.
    Type: Application
    Filed: March 19, 2021
    Publication date: May 11, 2023
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ryo NAKAKUBO, Mitsuyoshi ISHIDA, Masanori TOHNO, Hisami KOBAYASHI, Genki YOSHIKAWA, Kosuke MINAMI, Gaku IMAMURA, Hideki MATSUZAKA, Takahiro NEMOTO
  • Patent number: 11641009
    Abstract: A light-emitting device including a solid-state light source that emits light having a peak wavelength in the range of 480 nm or less and a fluorescent film that covers the solid-state light source and includes at least one kind of phosphor, wherein the fluorescent film includes at least one kind of near-infrared phosphor that is excited by light from the solid-state light source, has a peak wavelength in the range exceeding 700 nm, and has an emission spectrum with a full width at half maximum of 100 nm or more in a range including the peak wavelength.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: May 2, 2023
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, PHOENIX ELECTRIC CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takashi Fukuda, Tetsuya Gouda, Yuta Sakimoto, Naoto Hirosaki, Kohsei Takahashi
  • Publication number: 20230127466
    Abstract: The device for observing permeation and diffusion path of observation target gas includes: a scanning electron microscope 15; an observation target ion detecting unit 20; an observation target gas supply unit 19; a diaphragm-type sample holder 12, to which the sample is mounted in attachable/detachable state, as a diaphragm dividing between the analysis chamber 11 and the observation target gas pipe 14; and a control unit 50. The control unit acquires a SEM image and at the same time detects the observation target gas, which diffuses within the sample and is discharged to the surface of the sample, by electron stimulated desorption, in a state where stress is applied to the sample due to differential pressure generated between the analysis chamber and the observation target gas pipe by supplying the observation target gas, and obtains an ESD image of the observation target ions.
    Type: Application
    Filed: February 25, 2021
    Publication date: April 27, 2023
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Akiko Nakamura, Yoshiharu Murase, Hideaki Nishikawa, Taro Yakabe, Naoya Miyauchi
  • Patent number: 11634617
    Abstract: The present invention has for its object to provide an adhesive composition that is based on a naturally occurring material less likely to have adverse influences on the human body and has a tensile shear strength (adhesive strength) of at least 1 MPa with respect to a variety of adherends. The present invention provides an adhesive composition including at least a first pack and a second pack, wherein the first pack contains a tannic acid derivative in which a hydrogen atom in at least some hydroxyl group of tannic acid is substituted by a chain hydrocarbon group having at least one hydroxyl group, and the second pack contains a hydrocarbon having at least two cyanate groups or a derivative of the hydrocarbon.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: April 25, 2023
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Masanobu Naito, Sandip Das, Debabrata Payra
  • Patent number: 11629287
    Abstract: An object of the present invention is to provide a novel electrochromic device (ECD).
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: April 18, 2023
    Assignees: National Institute for Materials Science, National Taiwan University
    Inventors: Masayoshi Higuchi, Hsin-Che Lu, Kuo-Chuan Ho
  • Publication number: 20230101138
    Abstract: Provided is a polymer compound having a repeating unit represented by Formula 1A below: wherein in Formula 1A, Z1 represents a hydrogen atom or a monovalent group, R1 represents a group represented by Formula 1B, L1 represents a divalent group, n represents an integer of 1 or more, and in in Formula 1B, L2 represents a single bond or a divalent group, R2 represents a group selected from the group consisting of a hydroxy group and a group represented by *—OR3, R3 represents a hydrocarbon group which may have a hetero atom, a plurality of R3's may be bonded to each other to form a ring, * represents a bonding position, m represents an integer of 1 to 5, and a plurality of L1's and a plurality of R2's may be the same as or different from each other.
    Type: Application
    Filed: February 4, 2021
    Publication date: March 30, 2023
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Masanobu NAITO, Siqian WANG
  • Publication number: 20230102920
    Abstract: Provided is a novel thermoelectric conversion element with which the thermoelectric power generated in a direction orthogonal to both a temperature gradient and the magnetization can be increased without changing the thermoelectric conversion characteristic of a magnetic material.
    Type: Application
    Filed: March 12, 2021
    Publication date: March 30, 2023
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yuya Sakuraba, Weinan Zhou, Kenichi Uchida, Kaoru Yamamoto
  • Publication number: 20230090065
    Abstract: The present invention makes it possible to represent or synthesize any odor by separating the odor into a combination of a relatively small number of odors, similarly to separating a color into three primary colors. Since the “primary odors” corresponding to the primary colors have not yet been ascertained, the present invention provides a feasible method and apparatus in which, instead of presetting such fixed primary odors, the separation, synthesis, and the like can be performed by selecting a subset of odors from among a set consisting of a plurality of odors which subset or odors enables approximation of other odors as much as possible by mixture.
    Type: Application
    Filed: March 5, 2021
    Publication date: March 23, 2023
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ryo TAMURA, Hanxiao XU, Koki KITAI, Kosuke MINAMI, Makito NAKATSU, Genki YOSHIKAWA, Kota SHIBA, Koji TSUDA
  • Publication number: 20230084143
    Abstract: The present invention provides a surface treatment method that improves antimicrobial activity of copper or a copper alloy and enhances immediate effects of antimicrobial actions on the surface of the copper or the copper alloy. A surface treatment method for copper or a copper alloy according to the present invention comprises preparing a reducing agent solution containing a biological reducing substance, and treating the surface of the copper or the copper alloy with the reducing agent solution. The present invention also provides a surface treatment liquid for sterilizing copper or a copper alloy, in which the surface treatment liquid contains a biological reducing substance. The present invention also provides a sterilization method that comprises bringing copper or a copper alloy treated by the surface treatment method into contact with a surface of an object to sterilize the surface of the object.
    Type: Application
    Filed: November 18, 2022
    Publication date: March 16, 2023
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Akiko YAMAMOTO, Keiichiro OISHI, Shinji TANAKA
  • Publication number: 20230066150
    Abstract: A rare-earth magnet according to an embodiment of the present invention comprises: a rare-earth magnet precursor including a composition of (R1(1-x)R2x)yFe(100-y-z-v-w)CozBvTMlw in which R1 comprises at least one of Nd or Pr, and R2 comprises Ce; and a diffusion metal including a composition of (LRE(100-p-q)HREp)TM2q, and diffused on the surface of the rare-earth magnet precursor, wherein the LRE in the diffusion metal can comprise light rare earth including Y, and the HRE can comprise heavy rare earth.
    Type: Application
    Filed: February 6, 2020
    Publication date: March 2, 2023
    Applicants: LG ELECTRONICS INC., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Sunyong SONG, Seok NAMKUNG, Xin TANG, Hossein SEPEHRIAMIN, Tadakatsu OHKUBO, Kazuhiro HONO, Jiangnan LI
  • Patent number: 11591235
    Abstract: The present disclosure relates to a method for producing metal oxide nanoparticles includes a first step of preparing a reaction solution containing a metal complex, an alcohol, and water; a second step of heating the reaction solution for phase-separation under a hermetically sealed atmosphere where the volumetric expansion ratio of the reaction solution reaches 5 to 15%; a third step of holding the reaction solution heated in the second step for 30 minutes or more for dehydrating the metal complex to precipitate the metal oxide nanoparticles; and a fourth step of collecting the metal oxide nanoparticles after the metal oxide nanoparticles are cooled.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: February 28, 2023
    Assignees: FURUKAWA ELECTRIC CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yoshikazu Tsuzuki, Mariko Wakae, Kazuhiko Kurusu, Hideki Abe
  • Publication number: 20230057152
    Abstract: The present invention provides a steel material which has a plate shape and achieves both high strength and high rigidity by imparting large nonuniform deformation to the steel material utilizing rolling using a large-diameter work roll.
    Type: Application
    Filed: November 8, 2018
    Publication date: February 23, 2023
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Tadanobu INOUE, Hai QIU, Rintaro UEJI
  • Patent number: 11585873
    Abstract: A magnetoresistive effect element includes: a first ferromagnetic layer; a second ferromagnetic layer; and a non-magnetic layer provided between the first ferromagnetic layer and the second ferromagnetic layer, wherein the non-magnetic layer includes a first layer and a second layer, and wherein a lattice constant ? of the first layer and a lattice constant ? of the second layer satisfy a relationship of ??0.04×??2×???+0.04×?.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: February 21, 2023
    Assignees: TDK CORPORATION, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Shinto Ichikawa, Katsuyuki Nakada, Hiroaki Sukegawa, Seiji Mitani, Tadakatsu Ohkubo, Kazuhiro Hono
  • Publication number: 20230049280
    Abstract: The present invention is an alloy that contains Fe, B, P, and Cu, and includes a non-crystalline phase and a plurality of crystalline phases formed in the non-crystalline, wherein an average Fe concentration in a whole alloy is 79 atomic % or greater, and wherein a density of Cu clusters when a region with a Cu concentration of 6.0 atomic % or greater among regions with 1.0 nm on a side in atom probe tomography is determined to be a Cu cluster is 0.20×1024/m3.
    Type: Application
    Filed: December 22, 2020
    Publication date: February 16, 2023
    Applicants: TOHOKU MAGNET INSTITUTE CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Tatsuya Tomita, Yohei Nomura, Jun Uzuhashi, Tadakatsu Ohkubo, Kazuhiro Hono
  • Patent number: 11578396
    Abstract: Provided is Mg-based alloy wrought material having improved ductility, formality, and resistance against fracture. Intermetallic compounds may be formed by mutual bonding of added elements to be a fracture origin. While maintaining microstructure for activating non-basal dislocation movement of Mg-based alloy wrought material, added elements to create no fracture origin, but to promote grain boundary sliding were found from among inexpensive and versatile elements. Provided is Mg-based alloy wrought material including at least one element from Zr, Bi, and Sn and at least one element from Al, Zn, Ca, Li, Y, and Gd wherein remainder comprises Mg and unavoidable impurities; an average grain size in a parent phase is 20 ?m or smaller; a value of (?max??bk)/?max (maximum load stress (?max), breaking stress (?bk)) in a stress-strain curve obtained by tension-compression tests of the wrought material is 0.2 or higher; and resistance against breakage shows 100 kJ or higher.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 14, 2023
    Assignee: National Institute for Materials Science
    Inventors: Hidetoshi Somekawa, Yoshiaki Osawa
  • Patent number: 11570901
    Abstract: A method for manufacturing an aluminum circuit board including a step of spraying a heated metal powder containing aluminum particles and/or aluminum alloy particles to a ceramic base material, and of forming a metal layer on a surface of the ceramic base material. A temperature of at least a part of the metal powder is higher than or equal to a softening temperature of the metal powder and lower than or equal to a melting point of the metal powder at a time point of reaching the surface of the ceramic base material. A velocity of at least a part of the metal powder is greater than or equal to 450 m/s and less than or equal to 1000 m/s at the time point of reaching the surface of the ceramic base material.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: January 31, 2023
    Assignees: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, DENKA COMPANY LIMITED
    Inventors: Seiji Kuroda, Hiroshi Araki, Akira Hasegawa, Makoto Watanabe, Atsushi Sakai, Yoshitaka Taniguchi, Suzuya Yamada
  • Publication number: 20230009284
    Abstract: A magnetoresistive effect element includes: a first ferromagnetic layer; a second ferromagnetic layer; and a non-magnetic layer provided between the first ferromagnetic layer and the second ferromagnetic layer, wherein the non-magnetic layer includes a first layer and a second layer, and wherein a lattice constant ? of the first layer and a lattice constant ? of the second layer satisfy a relationship of ??0.04×??2×???+0.04 ×?.
    Type: Application
    Filed: July 8, 2021
    Publication date: January 12, 2023
    Applicants: TDK CORPORATION, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Shinto ICHIKAWA, Katsuyuki NAKADA, Hiroaki SUKEGAWA, Seiji MITANI, Tadakatsu OHKUBO, Kazuhiro HONO
  • Patent number: 11549033
    Abstract: A coating agent is capable of forming a coating film that has enhanced adhesion and adherence to a substrate, and enhanced water resistance as well and composed mainly of an aqueous material. A process of forming a coating agent uses the coating agent, a primer treatment process uses the coating agent, a process of doing repairs to concretes uses the coating agent, and a process of laying down roads uses the coating agent. The coating agent is composed mainly of a polyphenol derivative and containing a polymerizing agent, and has a pH of 9 or less. The polymerizing agent contains a compound having two or more functional groups selected from the group of an amino group and a mercapto group per molecule. In the process of forming a coating film, the coating agent is applied onto a substrate in an alkaline environment having a pH of greater than 9.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: January 10, 2023
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventor: Masanobu Naito
  • Publication number: 20230003813
    Abstract: Proposed is a phase shift introduction method, a structure, and a circuit device for eliminating or minimizing a risk associated with dissimilar materials, solving in principle a problem of mixing of a signal current and a control current that occurs due to DC connection of a phase shifter to a signal line, and stably and reliably providing a phase shift that is desired to be introduced without being adversely effected by noise generated by an ambient magnetic field, which is generated due to use of an external power supply. A structure according to the present invention includes a phase shifter 101 and a closed-loop circuit 103 that is directly used for computation or storage, and a quantum phase shift is generated in the closed-loop circuit 103 by using a fractional flux quantum captured by the phase shifter 101 that is DC-separated from the closed-loop circuit 103.
    Type: Application
    Filed: November 26, 2020
    Publication date: January 5, 2023
    Applicants: National Institute of Advanced Industrial Science and Technology, NATIONAL INSTITUTE FOR MATERIALS SCIENCE, Tokyo University of Science Foundation
    Inventors: Yasumoto TANAKA, Hirotake YAMAMORI, Takashi YANAGISAWA, Shunichi ARISAWA, Taichiro NISHIO