Patents Assigned to National Scientific Corp.
  • Patent number: 6281778
    Abstract: A monolithic inductor (20, 20′) is formed over a silicon or other substrate (22). The inductor (20, 20′) includes at least one coil (62, 78) arranged so that its axis (58) is parallel to the substrate (22). Other inductive features, such as other coils (64, 70, 72) or planar spirals (74, 76) are arranged in series with the coil (62, 78) to guide magnetic flux lines away from the substrate (22). In one embodiment, a common thin film coil core (60) made from a magnetic material is provided for two coils (62, 64). The coil core (60) provides a continuous magnetic material flux path through the two coils (62, 64). In another embodiment, an axis (58) of the coil (78) is located between the plane in which two spirals (74, 76) are located and the substrate (22) to guide magnetic flux lines (82) away from the substrate (22).
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: August 28, 2001
    Assignee: National Scientific Corp.
    Inventors: El-Badawy Amien El-Sharawy, Majid M. Hashemi
  • Patent number: 6104631
    Abstract: A static RAM memory cell (30) uses cross-coupled enhancement mode, N-channel MOS drive transistors (36) to form a bistable flip-flop. A load circuit (34) couples between I/O ports (40) of the drive transistors (36) and Vcc. For each drive transistor (36), the load circuit includes a depletion mode, N-channel MOS load transistor (54) and a forward biased tunnel diode (32). The drain and gate of the load transistor (54) couple across the anode and cathode of the tunnel diode (32) so that the forward voltage (V.sub.f) of the tunnel diode (32) controls the V.sub.gs transfer curve (56) of the load transistor.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: August 15, 2000
    Assignee: National Scientific Corp.
    Inventors: El-Badawy Amien El-Sharawy, Majid M. Hashemi
  • Patent number: 6013939
    Abstract: A monolithic inductor (20, 20') is formed over a silicon or other substrate (22). The inductor (20, 20') includes at least one coil (62, 78) arranged so that its axis (58) is parallel to the substrate (22). Other inductive features, such as other coils (64, 70, 72) or planar spirals (74, 76) are arranged in series with the coil (62, 78) to guide magnetic flux lines away from the substrate (22). In one embodiment, a common thin film coil core (60) made from a magnetic material is provided for two coils (62, 64). The coil core (60) provides a continuous magnetic material flux path through the two coils (62, 64). In another embodiment, an axis (58) of the coil (78) is located between the plane in which two spirals (74, 76) are located and the substrate (22) to guide magnetic flux lines (82) away from the substrate (22).
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: January 11, 2000
    Assignee: National Scientific Corp.
    Inventors: El-Badawy Amien El-Sharawy, Majid M. Hashemi
  • Patent number: 6008694
    Abstract: A distributed amplifier (10) configured to amplify an input signal (20) is presented. Within the amplifier (10), a first input phase-shift element (40) shifts the input signal (20) into a first shifted input signal (56). A first active element (18'), coupled to the first input phase-shift element (40), amplifies the first shifted input signal (56) into a first amplified signal (58). A second phase-shift element (42), coupled to the first input phase-shift element (40), shifts the first shifted input signal (56) into a second shifted input signal (62). A second active element (18"), coupled to the second phase-shift element (42), amplifies the second shifted input signal (62) into a second amplified signal (64). A first output phase-shift element (44), coupled to the first active element (18'), shifts the first amplified signal (58) into a first shifted amplified signal (60).
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: December 28, 1999
    Assignee: National Scientific Corp.
    Inventor: El-Badawy Amien El-Sharawy
  • Patent number: 5912481
    Abstract: A heterojunction bipolar transistor (20) is provided with a silicon (Si) base region (34) that forms a semiconductor junction with a multilayer emitter (38) having a thin gallium arsenide (GaAs) emitter layer (36) proximate the base region (34) and a distal gallium phosphide emitter layer (40). The GaAs emitter layer (36) is sufficiently thin, preferably less than 200 .ANG., so as to be coherently strained.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: June 15, 1999
    Assignee: National Scientific Corp.
    Inventors: El-Badawy Amien El-Sharawy, Majid M. Hashemi