Abstract: A system (111) and method (200) for providing sensory feedback (210) for touchless feedback control is provided. The system can include a touchless sensing unit (110) that detects at least one position (304) of an object in a touchless sensing space (300), and an indicator (166) communicatively coupled to the touchless sensing unit that provides sensory feedback associated with the at least one position. The indicator can change in accordance with a location, a recognized movement, or a strength of the touchless sensing space. The sensory feedback can be associated with acquiring a touchless control or releasing a touchless control. The sensory feedback can be visual, auditory, or haptic.
Abstract: A system (100) and method (200) for mapping a virtual user interface (VUI) to a graphical user interface (GUI) is provided. The method can include identifying (202) a range of object movement in a first coordinate system of the Virtual User Interface (101), identifying (204) a display range in a second coordinate system of the graphical user interface (103), and mapping (206) the range of object motion to the display range to produce a virtual mapping. The method can further include tracking (211) a finger (214) movement (310), applying (213) the virtual mapping to the finger movement to produce a second movement (312), and handling (215) a touchless control (102) in accordance with the second movement.
Abstract: A system (100) and method (400) for touchless object control is provided. The system can include a sensing unit (110) for capturing a first signal (677) reflected off a first object (151) at a first time and a second signal (679) reflected off the first object at a second time, a phase detector (116) for identifying a first phase difference (601) between the first signal and the second signal, and a processor (117) for updating an expected location of the first object using the first phase difference. A first object (143) can control a movement of a second object (124) using touchless control.
Abstract: A device (100) and method (300) for enhancing range detection accuracy in ultrasonic touchless sensing applications can include transmitting (302) an ultrasonic signal intended to reflect off a finger and produce an echo, receiving (304) the echo, saving (306) most recent echoes to a history (400), selectively discarding (308) echoes less recently saved in the history to produce a sparse history, identifying (310) a relative phase of the echo with respect to a previously received echo in the sparse history, tracking (312) a location and a movement of the finger from an arrival time of the echo and the relative phase, and providing (314) touchless control to a user interface control in accordance with the location and the movement of the finger.
Abstract: A device (100) and a method (200) for operating a camera (130) based on touchless movements is provided. The device (100) includes a sensing unit (110) for detecting a touchless movement, and a controller (130) for handling one or more controls of the camera in accordance with the touchless movement. A virtual user interface is provided to allow a user to control a camera on a computer or a mobile device using touchless finger movements. Touchless controls are provided for zoom, pan, focus, aperture, balance, color, calibration, or tilt. A first touchless finger movement can select a control, and a second touchless finger movement can adjust the control.
Abstract: A method (200) and system (220) for range detection is provided. The system can include a sensing unit (110) for detecting a location and movement of a first object (401), and a processor (107) for providing a measure of the movement. The processor can convert the measure to a coordinate signal for moving a second object (124) in accordance with a location and movement of the first object. The system can include a pulse shaper (109) for producing a pulse shaped signal (167) and a phase detector (101) for identifying a movement from a reflected signal (166). A portion of the pulse shaped signal can be a frequency modulated region (312), a constant frequency region (316), or a chirp region (324). In one arrangement, the pulse shaper can be a cascade of all-pass filters (515) for providing phase dispersion.