Abstract: A method for fabricating an electron field emission cathode, the field emission cathode including a substrate having a field emission material layer engaged therewith, where the field emission material incorporates a carbon nanotube material and a metal oxide. The field emission material is produced via a sol-gel process to improve field emission characteristics of the field emission cathode and field emission cathode devices implementing such cathodes.
Abstract: A field emission cathode device and method for forming a field emission cathode device involve a cathode element having a field emission surface, and a gate electrode element disposed in spaced-apart relation to the field emission surface of the cathode element so as to define a gap therebetween, with the gate electrode element having a plurality of parallel grill members or a mesh structure laterally-extending between opposing anchored ends. A film element laterally co-extends and is engaged with the gate electrode element, with the film element being arranged to allowed electrons emitted from the field emission surface of the cathode element to pass therethrough, and to cooperate with the gate electrode element and the cathode element to form a substantially uniform electric field within the gap and about the field emission surface.
Abstract: A method for fabricating a field emission cathode, the field emission cathode including a substrate having a field emission layer engaged therewith, where the field emission layer includes a plurality of purified carbon nanotubes. The carbon nanotubes are purified via a graphitization or annealing process.
Abstract: A field emission cathode device and formation method involves a rotating field emission cathode including a field emission material deposited on a surface thereof, the field emission cathode rotating about an axis and being electrically connected to ground, and a planar gate electrode extending parallel to the surface of the rotating field emission cathode and defining a gap therebetween. A gate voltage source is electrically connected to the gate electrode and is arranged to interact therewith to generate an electric field, with the electric field inducing a portion of the surface of the rotating field emission cathode adjacent to the gate electrode to emit electrons from the field emission material toward and through the gate electrode.
Abstract: A method and system for cleaning a field emission cathode device, the field emission cathode device including a substrate having a field emission layer engaged therewith, includes engaging the field emission cathode device with a vibration device such that the substrate is disposed above the field emission layer. The field emission cathode device is then vibrated with the vibration device in an X, Y, or Z direction at a predetermined frequency and at a predetermined amplitude for a predetermined time duration so as to clean the field emission cathode device by dislodging non-embedded particles from the field emission layer.
Abstract: A field emission cathode device and method for forming a field emission cathode device involve a cathode element having a field emission surface disposed in spaced-apart relation to a gate electrode element so as to define a gap between the field emission surface and the gate electrode element. The gate electrode element extends laterally between opposing anchored ends. The gate electrode element is arranged to deform away from the field emission surface in response to heat, so as to increase the gap between the field emission surface and the gate electrode element.
Abstract: A method for fabricating an electron field emission cathode, the field emission cathode including a substrate having a field emission material layer engaged therewith, where the field emission material incorporates a carbon nanotube material and a metal oxide. The field emission material is produced via a sol-gel process to improve field emission characteristics of the field emission cathode and field emission cathode devices implementing such cathodes.