Abstract: A TFT (Thin Film Transistor) is provided in which a hydrogen feeding layer is able to be formed in a position where diffusing distance of hydrogen can be made short without causing an increase in photolithography processes. In the TFT, the hydrogen feeding layer to diffuse hydrogen into a dangling bond existing at an interface between a polycrystalline silicon thin film and a gate insulating film is formed in a position between the gate insulating film and a gate electrode. According to this configuration, diffusing distance of hydrogen at a period of time during hydrogenation can be made short and the hydrogenation process can be sufficiently performed without taking time in heat treatment.
Abstract: To provide a browsing terminal and the like with high security, which can effectively prevent contents data stored in a terminal from being stolen unlawfully by a third party even if the terminal is accidentally lost. The browsing terminal includes: a receiving part for receiving contents data; a volatile memory for storing the received contents data; a display device with a memory function, which displays the contents data stored in the volatile memory; and a secondary battery for supplying power to the volatile memory and the display device.
Abstract: A semi-transmissive type liquid-crystal display device makes it possible to easily optimize both the reflection characteristic (reflection mode) and the transmission characteristic (transmission mode) while keeping a high aperture ratio, thereby improving the display quality. A liquid crystal layer is disposed between first and second substrates. Switching elements are formed on the first substrate for respective pixel regions. Each of the pixel regions is divided into a transmission region and a reflection region. An interlayer insulating film is formed to cover the switching elements on the first substrate. In the transmission region, a transmission electrode is formed on the interlayer insulating film. In the reflection region, a reflection electrode is formed on the interlayer insulating film. The surface of the interlayer insulating film is partially removed, thereby forming a level difference between the transmission and reflection regions.
Abstract: A semi-transmissive type liquid-crystal display device suppresses the reduction and corrosion of the transmission or common electrode due to the cell corrosion reaction with a simple method. In each pixel region, the reflection electrode is formed over the glass plate, where the interlayer insulating film and the barrier metal film intervene between them. The reflection electrode is electrically connected to the transmission electrode by way of the barrier metal film. The transmission electrode and the corresponding scanning line thereto are apart from each other at a distance of 2 ?m (preferably, 3 ?m) or greater. A developer solution penetrating through the crack formed in the barrier metal film does not reach the transmission electrode (or common electrode), preventing the reduction and corrosion of the transmission or common electrode.
Abstract: A liquid crystal display device includes an active matrix substrate and a counter substrate opposing each other with a gap therebetween defined by a plurality of columnar spacers. The active matrix substrate has a plurality of spacer holes each receiving therein a corresponding one of the columnar spacers, and a plurality of dummy spacer holes aligned with the spacer holes and each receiving therein no columnar spacer.
Abstract: A LCD device prevents image quality degradation caused by the gap non-uniformity in the display region with a simple measure. A TFT substrate and an opposite substrate are coupled to each other with a sealing member in such a way as to form a gap therebetween. A liquid-crystal layer is formed in the gap. Spacers are arranged in the liquid-crystal layer. The TFT substrate has a display region defined to include the pixels and a non-display region formed outside the display region. The non-display region is located between the display region and the sealing member. The spacers are located in a first part of the liquid-crystal layer corresponding to the display region while no spacer being located in a second part of the liquid-crystal layer corresponding to the non-display region. A depression for receiving extra liquid crystal may be additionally formed in the gap.
Abstract: An active matrix liquid crystal display device of the invention includes a liquid crystal display panel operating in a normally black mode having a first substrate provided with a color filter and a second substrate provided with an active matrix array, wherein the first substrate is provided with a laminated colored layer with three colors, a laminated colored layer with two colors and a colored layer with one color in a frame part surrounding a display area without being provided with a black matrix, and the second substrate is provided with a conductive film formed in a region which is opposed to the laminated colored layer with two colors and the colored layer with one color, between the display area and the laminated colored layer with three colors.
Abstract: A power supply circuit is provided which is capable of preventing a drop in an output voltage of the power supply circuit used as a DC/DC converter made up of single and conductive type (n-type or p-type) MOS transistors and of improving efficiency. Since a control voltage having an amplitude [2×VDD] is applied from a level shift circuit to a charge-pump circuit, even when potentials at nodes becomes a level [2×VDD], pMOS transistors are kept in an OFF state, thereby preventing leakage of currents from pMOS transistors. This avoids a drop in an DC output voltage. As inputs to the level shift circuits, potentials at nodes of the charge-pump circuit are used and, therefore, even if potentials at nodes of the level shift circuits are high, pMOS transistors are kept in an OFF state.
Abstract: An active matrix substrate or TFT substrate is provided with a lower layer wiring with a groove wiring structure covering surroundings of a copper layer with a barrier metal film is formed by forming a groove at an insulating substrate and depositing the barrier metal film and the copper layer in this groove. This groove wiring structure is used for a TFT substrate of a liquid crystal display (LCD) device. It is possible to manufacture an LCD device with large size, high density, a large aperture ratio and in which the disclination defects originating from a different in level of the lower layer wiring and an occurrence of disconnection failures in an upper layer wiring are suppressed.
Abstract: In a liquid crystal display device comprising a first substrate 101 having a color filter, a second substrate 131 and a liquid crystal layer disposed therebetween, a color filter layer 110 is disposed on a protection film 108 of a thin film transistor formed on the first substrate 101 so as to be partitioned by a light shielding portion 111, and a common electrode 103 is disposed thereon. A pixel electrode to be connected to a source electrode 107 is disposed through a through hole formed in an overcoat layer (interlayer separation film) 112. On the first substrate below the color filter layer 110 are provided plural scan signal electrodes, plural video signal electrodes crossing the scan signal electrodes in a matrix form, plural thin film transistors formed in association with the crossing points between the electrodes.
Abstract: Lattice-shaped pixel electrodes and lattice-shaped common electrodes are provided on a substrate in which switching elements of a horizontal electric-field liquid crystal display device such as a TFT are formed. Each pixel electrode is integrally formed with one electrode of the switching element such as the TFT. Each pixel electrode has a notch at an external periphery of a horizontal bar of the lattice-shaped pixel electrode. A contact hole connecting the common signal wiring and the common electrode in the substrate is provided in an area of the notch of the pixel electrode.
Abstract: A liquid crystal display device includes a first substrate including a thin film transistor, a data line, a pixel electrode, and a common electrode, a second substrate, and liquid crystal sandwiched between the first and second substrates, wherein an image signal is applied to the thin film transistor through the data line to generate an electric field between the pixel electrode receiving the image signal and the common electrode such that the liquid crystal is rotated by the electric field in a plane which is in parallel with the first substrate. The first substrate includes an electrically insulating inorganic film covering the data line therewith, a first island-shaped electrically insulating organic film formed on the electrically insulating inorganic film above the data line, and a shield common electrode covering the first island-shaped electrically insulating organic film therewith and overlapping the data line when viewed vertically.
Abstract: In a method of forming an electrically conductive lamination pattern, an insulating film is formed on a surface of a chromium-containing bottom layer, before an aluminum-containing top layer is formed over the insulating film, so that the insulating film separates the aluminum-containing top layer from the chromium-containing bottom layer. A first selective wet etching process is carried out for selectively etching the aluminum-containing top layer with a first etchant. A second selective wet etching process is carried out for selectively etching the chromium-containing bottom layer with a second etchant in the presence the insulating film which suppresses a hetero-metal-contact-potential-difference between the chromium-containing bottom layer and the aluminum-containing top layer during the second selective wet etching process.
Abstract: A method of deforming a pattern comprising the steps of: forming, over a substrate, a layered-structure with an upper surface including at least one selected region and at least a re-flow stopper groove, wherein the re-flow stopper groove extends outside the selected region and separate from the selected region; selectively forming at least one pattern on the selected region; and causing a re-flow of the pattern, wherein a part of an outwardly re-flowed pattern is flowed into the re-flow stopper groove, and then an outward re-flow of the pattern is restricted by the re-flow stopper groove extending outside of the pattern, thereby to form a deformed pattern with at least an outside edge part defined by an outside edge of the re-flow stopper groove.
Abstract: A microlouver has, as a basic unit, a light-controlling layer in which a light-absorbing layer and a transparent layer are laminated together, and a plurality of basic units L and S comprising a plurality of types of light-controlling layers having different layer thicknesses or optical constants, disposed in the direction of the layer thickness of the basic units. The array mode of the basic units L and S is determined based on a random number or a sequence-generating rule. For this reason, the microlouver has a large number of frequency components in terms of spatial frequency, and moire fringes that have a specific period and are normally caused by the interference with other optical elements are therefore prevented from occurring.
Type:
Grant
Filed:
August 2, 2006
Date of Patent:
June 23, 2009
Assignees:
NEC Corporation, NEC LCD Technologies Ltd.
Abstract: An optical element comprises a pair of substrates each having an electrode and bonded together with a gap therebetween and a light adjusting material including a liquid crystal and enclosed in the gap. Each of the pair of substrates has an electrode connecting portion to be connected to an external circuit. At least a part of the electrode connecting portion of each of the substrates is located on the same side as that of the optical element. The electrode connecting portion of one of the substrates and the electrode connecting portion of the other of the substrates have respective electrode portions at regions that are not opposed to each other. The electrode portion of each of the electrode connecting portions is connected to the external circuit.
Type:
Grant
Filed:
August 25, 2006
Date of Patent:
June 23, 2009
Assignees:
NEC Corporation, NEC LCD Technologies, Ltd., SEIKO Company, Ltd.
Abstract: To provide, with a simple structure, a voltage controlled oscillator, etc., whose center oscillation frequency is stable even if there is a change in the temperature. A delay element includes: a delay generating part which adds a delay amount to an input signal to generate an output signal; and a delay control part which controls the delay. The delay control part has a delay adjusting circuit which outputs a first control signal for adjusting the delay amount, and a temperature compensating circuit which outputs a second control signal for compensating property changes caused by the temperature. The delay control part outputs a third control signal obtained by synthesizing the first control signal and the second control signal to the delay generating part to control the delay amount. The delay control part obtains the third control signal by having the delay adjusting circuit and the temperature compensating circuit connected in series.
Abstract: A pixel electrode connected to a signal line through a switching element and a common electrode connected to a common wiring are disposed, as alternating with each other, within each pixel region. Common potential lines are disposed on level below the signal line with an insulating film in between and also on both sides of the signal line when seen in plan view. A floating electrode is disposed on level above the signal line with a protective film in between, as overlapping the signal line and the common potential lines on both sides of the signal line.
Abstract: An apparatus for processing a substrate includes a substrate carrier for carrying a substrate, a chemical-applying unit for applying chemical to the substrate, and a development unit for developing the substrate.
Abstract: In a display device equipped with a light source device, a second light-guide member is provided to the back surface of a first light-guide member that has an emitted light control sheet provided to the front surface thereof. The emitted light control sheet is composed of a flat plate portion and protrusions. A first light source mounted to a side surface of the first light-guide member, and a second light source mounted to a side surface of a second light-guide member are switched and turned on. The emitted light control sheet has light-condensing effects when the first light source is on, and has diffusing effects when the second light source is turned on. The angle range of illuminating light can thereby be switched.
Type:
Grant
Filed:
September 19, 2006
Date of Patent:
May 19, 2009
Assignees:
NEC Corporation, NEC LCD Technologies, Ltd.