Abstract: A semi-transparent reflecting plate including plural reflecting surfaces extending substantially over an entire surface of a reflecting plate, not only permitting light to pass therethrough, but also reflecting the light on the reflecting surfaces.
Abstract: Within a reflective display section R, a part of a light that reaches a reflective electrode through a color filter exits to the outside through slits and a part of a light that reaches the reflective electrode through the slits exits to the outside through the color filter. In addition, a light reaching the reflective electrode through the color filter and exiting to the outside through the color filter, and a light having no opportunity to pass through the slits also can be observed. Therefore, a mean film thickness of color filter through which all lights pass during the time in which they travel the associated distance after they are inputted to the inside until they are outputted to the outside becomes nearly equal to that could be observed in the transmissive section T.
Abstract: A first polarizer and a second polarizer have respective absorption axes extending approximately perpendicularly to each other, and a first retardation plate and a third retardation plate have respective slow axes extending approximately perpendicularly to each other. The first retardation plate and the third retardation plate have respective retardations that are approximately equal to each other, and have respective Nz coefficients that are approximately equal to each other. A second retardation plate and a liquid crystal layer in a transmissive display area have a slow axis and an orientation axis, respectively, extending approximately perpendicularly to each other. The second retardation plate and the liquid crystal layer in the transmissive display area have respective retardations that are approximately equal to each other.
Abstract: An in-plane-switching-mode (IPS) LCD device includes a TFT substrate and a CF substrate sandwiching therebetween an LC layer, and a pair of polarizing films sandwiching therebetween the substrates and the LC layer. Each polarizing film has a polarization layer and a protective layer. An optical compensation layer having a birefringence is disposed between the light-emitting-side polarizing film and the CF substrate. The optical compensation layer has an in-plane retardation of N1 satisfying the following relationship: 83.050?0.8101×D1?N1?228.09?0.74D1 in the range of 0<D1?80 ?m, wherein D1 is the thickness of the protective layer of the light-incident-side polarizing film.
Abstract: A liquid crystal display element is disclosed for displaying an image. The liquid crystal display element comprises a liquid crystal display layer in which voltages are applied to a transmissive display unit and a reflective display unit, defined in one pixel, independently of each other, and a light source for irradiating the liquid crystal display layer with light from the back, and a reflection control element disposed between the liquid crystal display layer and light source. The liquid crystal display element is switched between a reflective state and a transmissive state in accordance with a voltage applied to the reflection control element. The liquid crystal display element is switched among a transmissive display mode, a combined reflective/transmissive display mode, and a reflective display mode, by utilizing the transmissive display unit and reflective display unit to display an image independently of each other.
Type:
Grant
Filed:
July 10, 2007
Date of Patent:
October 26, 2010
Assignee:
NEC LCD Technologies, Ltd
Inventors:
Koji Mimura, Ken Sumiyoshi, Jin Matsushima
Abstract: A display device is provided with a light source, an light-guide plate, a prism sheet, a transparent/scattering state switching element, and a transmissive liquid crystal display panel. In the transparent/scattering state switching element, two transparent substrates are provided parallel to and separated from each other, and an electrode is provided to the surface of each transparent substrate. A scattering seal member is also provided between external peripheral portions of the transparent substrates, and a PDLC layer is enclosed in a space sealed by the scattering seal member between the transparent substrates. The scattering seal member is endowed with scattering properties whereby incident light is transmitted in a scattered state, and the degree of scattering thereof is equal to the degree of scattering of the PDLC layer during the scattering state.
Abstract: To overcome issues generated due to the light-shield part in a display device which displays different images towards a plurality of viewpoints, and to provide a device for easily synthesizing images to be displayed on a display part. A display controller includes: an image memory which stores viewpoint image data for a plurality of viewpoints; a writing control device which writes the viewpoint image data inputted from outside to the image memory; a parameter storage device which stores parameters showing a positional relation between a lenticular lens and the display part; and a readout control device which reads out the viewpoint image data from the image memory according to a readout order obtained by applying the parameters to a repeating regulation that is determined based on layout of the sub-pixels, number of colors, and layout of the colors, and outputs it to the display module as synthesized image data.
Type:
Application
Filed:
April 14, 2010
Publication date:
October 21, 2010
Applicant:
NEC LCD Technologies, Ltd.
Inventors:
Tetsushi SATOU, Kazunori MASUMURA, Koji SHIGEMURA, Shinichi UEHARA
Abstract: In a transflective type LCD provided with a transparent region and a reflection region in each pixel, when an irregular film 11 is formed on an active matrix substrate 12 to form irregularities of a reflection electrode film 6, the irregular film 11 is specifically formed to almost the same film thickness in both the transparent region and the reflection region to provide substantially the same inter-substrate gap in these two regions so that they may have almost the same V-T characteristics and also the reflection electrode film 6 made of Al/Mo is formed so as to overlap with a transmission electrode film 5 made of ITO all around an outer periphery of the transmission electrode film 5 by a width of at least 2 ?m, thus suppressing electric erosion from occurring between the ITO and Al substances at the edge of the transmission electrode film 5.
Abstract: A beam direction control element has transparent areas and light absorption areas alternately arranged on a surface of a substrate, wherein the light absorption areas function as a louver for controlling the direction of a beam of light. The beam direction control element is manufactured by disposing an optically transparent material on a first transparent substrate to form transparent ridges which constitute the transparent areas, filling curable and photo-absorptive fluid in gaps between the transparent ridges, and then curing the fluid to form the light absorption areas.
Abstract: A lenticular lens is provided in front of a liquid crystal panel composed of a plurality of pixels. In this case, the lenticular lens is arranged so that one cylindrical lens corresponds to two pixels adjacent to each other. Then, light rays outgoing from two pixels are refracted by this one cylindrical lens and intersect with each other at a point positioned on the surface of a tablet, and then reach the right eye and the left eye of a user, respectively.
Abstract: A spherical spacer is used as a spacer member defining a gap, and is fixed to a color filter substrate. A concave portion coming in contact with a part of the spherical spacer is formed in a position in a TFT substrate, the position being opposite to the spherical spacer. The substrates are bonded with each other by engaging the spherical spacer and the concave portion with each other.
Abstract: A method for forming an organic mask, includes: permeating an organic solvent into an organic pattern formed on a base film and containing at least one kind of organic material, by contacting the organic pattern with the organic solvent; and thereby, partially or entirely decreasing original adhesion strength between the base film and the organic pattern. A heat treatment may be conducted after contacting to adjust the adhesion strength. Using the organic pattern as a mask, isotropic etching is conducted. As a result, a desired taper angle of the etched base film can be achieved with high accuracy. The taper angle of the etched base film is adjustable by controlling the adhesion strength through the heat treatment.
Abstract: Disclosed is a substrate cleaning apparatus including a brush cleaning unit which cleans a substrate by making a roll brush in contact with a surface of the substrate, and a transporting unit which conveys the substrate. The roll brush includes a bristle. At least one of a diameter of the roll brush, stiffness of the bristle, and density of the bristle becomes larger from an end portion of the roll brush to a central portion thereof.
Abstract: A thin-film transistor array includes an electrically insulating substrate, a plurality of thin-film transistors arranged in a matrix on the substrate, and each including a channel, a source, and a drain each comprised of an oxide-semiconductor film, a pixel electrode integrally formed with the drain, a source signal line through which a source signal is transmitted to a group of thin-film transistors, a gate signal line through which a gate signal is transmitted to a group of thin-film transistors, a source terminal formed at an end of the source signal line, and a gate terminal formed at an end of the gate signal line. The source terminal and the gate terminal are formed in the same layer as a layer in which the channel is formed. The source terminal and the gate terminal have the same electric conductivity as that of the pixel electrode.
Type:
Grant
Filed:
August 7, 2007
Date of Patent:
September 28, 2010
Assignees:
NEC Corporation, NEC LCD Technologies, Ltd.
Abstract: A normally-white twisted-nematic mode LCD device includes a first optical compensation film between a light-incident-side polarization film and an LC cell, and a second optical compensation film between a light-emitting-side polarization film and the LC cell. The optical axis of the first (second) optical compensation film projected onto the substrate surface is substantially parallel to the longer axis of an equivalent refractive index ellipsoid of a residual retardation of the LC layer in the vicinity of a light-incident-side (light-emitting-side) substrate upon display of black color.
Abstract: Light exposure areas 103 and light masking areas 104 in a sole reticle are arrayed in alternation to one another in both the longitudinal and transverse directions. Substrate is exposed to light by multi-domain light exposure using this reticle so that the respective areas of the reticle exposed to light with respective shots A to B, B to C . . . , N to M are not adjacent to one another in the boundary portions of the reticle shifted for executing the respective shots, thus relaxing the difference in illuminance between the respective shots and the difference in finish of the boundary portions of the shots, such differences becoming imperceptible to human eyes upon displaying liquid crystal display apparatus.
Abstract: A liquid crystal display device provided herein can be switched between a display mode and a mirror mode, and can ensure a high image quality in the display mode. The liquid crystal display device comprises liquid crystal panel 200 including sub-pixels 254, 255, and back light 213 for irradiating light to the back surface of liquid crystal panel 200. Transmission sub-pixel 254 can be switched into an image display state which can allow irradiated light to exit, and a black display state which does not allow irradiated light to exit. Mirror sub-pixel 255 can be switched between a mirror state which can allow reflected light to exit and a non-mirror state which does not allow reflected light to exit, independently of transmission sub-pixel 254. A control unit places each transmission sub-pixel 254 into the image display state or black display state, and places each mirror sub-pixel 255 into the mirror state or non-mirror state.
Type:
Application
Filed:
March 18, 2010
Publication date:
September 23, 2010
Applicant:
NEC LCD Technologies, LTD.
Inventors:
Jin MATSUSHIMA, Michiaki SAKAMOTO, Ken SUMIYOSHI, Kenichi MORI
Abstract: A liquid crystal device is provided which is capable of being free from degradation of signal receiving sensitivity and/or malfunction without performing thinning-out and complementing on video signals of an electronic device having an embedded peripheral circuit to receive and transmit data. A stop period during which outputting of horizontal synchronizing signal made up of a video signal strobe signal STB and vertical drive clock signal VCK is stopped at least one time or more and for two horizontal periods or more during a display period in one vertical period is set by a control device (for example, timing controller). In this horizontal synchronizing stop period setting mode processing, a first signal (for example, status signal) indicating that the outputting of the horizontal synchronizing signal is in a stop state is transmitted to an electronic circuit (for example, peripheral circuit).
Abstract: An LCD device includes front substrate and rear substrate sandwiching therebetween an LC layer, front polarizing film and rear polarizing film disposed on the front side of the front substrate and the rear side of the rear substrate, respectively, and a reflecting film disposed on the rear side of the rear polarizing film. The distance between the LC layer and the reflecting film is set at 0.8 mm or smaller, to solve a parallax problem.
Abstract: A three-dimensional image/two-dimensional image display device includes a plurality of display pixels, and a lenticular lens for three-dimensional display. Each display pixel is consisted of M×N number of sub-pixels to be viewed from N view points. A pitch a of sub-pixels arranged in the longitudinal direction of ridge projection of the lenticular lens and a pitch b of the sub-pixels arranged in a direction orthogonal to the longitudinal direction of the lenticular lens satisfy the following expression. The M×N number of sub-pixels included in each of said display pixels are formed within a square area.