Patents Assigned to NEDERLANDSE ORGANISATIE VOOR WETENSCHAPPELIJK ONDERZOEK (NWO)
  • Patent number: 9199961
    Abstract: The present invention relates to a method for preparing caprolactone, comprising converting 5-hydroxymethyl-2-furfuraldehyde by hydrogenation into at least one intermediate compound selected from the group of 2,5-tetrahydrofuran-dimethanol, 1,6-hexanediol and 1,2,6-hexanetriol, and preparing caprolactone from said intermediate compound. Further, the invention relates to a method for preparing 1,2,6-hexanetriol comprising preparing 5-hydroxymethyl-2-furfaldehyde from a renewable source, converting 5-hydroxymethyl-2-furfaldehyde into 2,5-tetrahydrofuran-dimethanol and converting 2,5-tetrahydrofuran-dimethanol into 1,2,6-hexanetriol. Further, the invention relates to a method for preparing 1,6-hexanediol from 1,2,6-hexanetriol, wherein 1,2,6-hexanetriol is subjected to a ring closure reaction, thereby forming (tetrahydro-2H-pyran-2-yl)methanol, and the (tetrahydro-2H-pyran-2-yl)methanol is hydrogenated, thereby forming 1,6-hexane diol.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: December 1, 2015
    Assignee: NEDERLANDSE ORGANISATIE VOOR WETENSCHAPPELIJK ONDERZOEK (NWO)
    Inventors: Johannes Gerardus De Vries, Teddy, Pim Huat Phua, Ignacio Vladimiro Melián Cabrera, Hero Jan Heeres
  • Patent number: 8987163
    Abstract: Disclosed is a process for the production of lower olefins by the conversion of a feed stream comprising carbon monoxide and hydrogen, and catalysts as used therein, such as a Fischer-Tropsch process. By virtue of the invention, lower olefins can be formed from synthesis gas, with high selectivity, and low production of methane. The catalysts used herein comprise an ?-alumina support, and a catalytically active component that comprises iron-containing particles dispersed onto the support in at least 1 wt. %. The majority of the iron-containing particles is in direct contact with the ?-alumina and is well-distributed thereon. Preferably, the iron-containing particles have an average particle size below 30 nm, and most preferably below 10 nm. The supported catalysts not only show a high selectivity, but also a high catalyst activity and chemical and mechanical stability.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 24, 2015
    Assignee: Nederlandse organisatie voor wetenschappelijk onderzoek (NWO)
    Inventors: Hirsa Maria Torres Galvis, Johannes Hendrik Bitter, Krijn Pieter de Jong
  • Publication number: 20130137863
    Abstract: The present invention relates to a method for preparing caprolactone, comprising converting 5-hydroxymethyl-2-furfuraldehyde by hydrogenation into at least one intermediate compound selected from the group of 2,5-tetrahydrofuran-dimethanol, 1,6-hexanediol and 1,2,6-hexanetriol,and preparing caprolactone from said intermediate compound. Further, the invention relates to a method for preparing 1,2,6-hexanetriol comprising preparing 5-hydroxymethyl-2-furfaldehyde from a renewable source, converting 5-hydroxymethyl-2-furfaldehyde into 2,5-tetrahydrofuran-dimethanol and converting 2,5-tetrahydrofuran-dimethanol into 1,2,6-hexanetriol. Further, the invention relates to a method for preparing 1,6-hexanediol from 1,2,6-hexanetriol, wherein 1,2,6-hexanetriol is subjected to a ring closure reaction, thereby forming (tetrahydro-2H-pyran-2-yl)methanol, and the (tetrahydro-2H-pyran-2-yl)methanol is hydrogenated, thereby forming 1,6-hexane diol.
    Type: Application
    Filed: March 23, 2011
    Publication date: May 30, 2013
    Applicant: NEDERLANDSE ORGANISATIE VOOR WETENSCHAPPELIJK ONDERZOEK (NWO)
    Inventors: Johannes Gerardus De Vries, Teddy, Pim Huat Phua, Ignacio Vladimiro Melián Cabrera, Hero Jan Heeres