Abstract: The invention relates in one aspect to a pharmaceutical composition comprising a nucleic acid delivery vehicle for delivering a deliverable nucleic acid into a bacterial cell, wherein the delivery vehicle comprises a deliverable nucleic acid packaged into one or more bacteriophage coat proteins, and wherein the delivery vehicle is capable of infecting the bacterial cell to introduce the deliverable nucleic acid into the cell, following which the deliverable nucleic acid is capable of forming a plasmid in the cell and being transmitted to one or more different bacterial cells by conjugation and not by infection. Compositions including a pharmaceutical composition comprising the delivery vehicle, and methods involving use or manufacture of the delivery vehicle, are also disclosed.
Type:
Application
Filed:
October 5, 2021
Publication date:
January 20, 2022
Applicant:
NEMESIS BIOSCIENCE LTD
Inventors:
Conrad Paul LICHTENSTEIN, Yoshikazu Gi MIKAWA
Abstract: The invention relates in one aspect to a pharmaceutical composition comprising a nucleic acid delivery vehicle for delivering a deliverable nucleic acid into a bacterial cell, wherein the delivery vehicle comprises a deliverable nucleic acid packaged into one or more bacteriophage coat proteins, and wherein the delivery vehicle is capable of infecting the bacterial cell to introduce the deliverable nucleic acid into the cell, following which the deliverable nucleic acid is capable of forming a plasmid in the cell and being transmitted to one or more different bacterial cells by conjugation and not by infection. Compositions including a pharmaceutical composition comprising the delivery vehicle, and methods involving use or manufacture of the delivery vehicle, are also disclosed.
Type:
Grant
Filed:
August 12, 2016
Date of Patent:
November 9, 2021
Assignee:
NEMESIS BIOSCIENCE LTD
Inventors:
Conrad Paul Lichtenstein, Yoshikazu Gi Mikawa
Abstract: The invention encompasses recombinant polynucleotides, compositions and methods for interfering with antibiotic resistance genes, and/or replicons carrying such genes, in microorganisms in order to disable antibiotic resistance in the microorganisms, using a clustered regularly interspaced short palindromic repeat (CRISPR) array system.