Abstract: A Non-transferable Radio Frequency Identification (RFID) assembly for attachment to an article comprises a RFID module; and a antenna module coupled with the RFID module, the antenna module comprising a conductive layer, a substrate, and an adhesive modification layer between the conductive layer and the substrate, the adhesive modification layer configured such that when the assembly is attached to the article and attempt to remove the assembly will cause the substrate to release and leave the conductive layer intact.
Type:
Grant
Filed:
October 5, 2009
Date of Patent:
January 8, 2013
Assignee:
Neology, Inc.
Inventors:
Joe Mullis, Steve Gonzalez, Emily Olanoff
Abstract: A card comprises an antenna configured to generate and receive radio frequency signals, a chip coupled with the antenna, the chip configured to store sensitive information and communicate the information to an authorized reader via the antenna, and a switching mechanism configured to tune and detune the antenna relative to the chip to enable and disable respectively, the chips ability to communicate the sensitive information via the antenna.
Type:
Grant
Filed:
February 2, 2009
Date of Patent:
January 8, 2013
Assignee:
Neology, Inc.
Inventors:
Sheshidher Nyalamadugu, Jun Liu, Francisco Martinez de Velasco Cortina
Abstract: In the embodiments described herein, a RFID enabled license plate is constructed by using the license plate, or a retro-reflective layer formed thereon as part of the resonator configured to transmit signals generated by and RFID chip integrated with the license plate. Such an RFID enabled license plate can include a metal license plate with a slot formed in the metal license plate, and a RFID tag module positioned in the slot. The RFID tag module can include a chip and a loop, and the loop can be coupled with the metal license plate, e.g., via inductive or conductive coupling. In this manner, the metal license plate can be configured to act as a resonator providing increased performance.
Type:
Grant
Filed:
December 20, 2007
Date of Patent:
January 1, 2013
Assignee:
Neology, Inc.
Inventors:
Jeffrey Zhu, Chih-chuan Yen, Jun Liu, Joe Mullis
Abstract: A RFID cabinet comprises a cabinet structure and one or more drawers or shelves. Chambers are formed within the cabinet to house the one or more drawers or shelves. An RFID scanner is configured to scan items tagged with RFID tags in the chambers via one or more antennas. The antennas can include transmit and receive antennas or antennas configured to perform both transmit and receive functions. The drawers can have a access cover, or lid that can be controlled so as to control access to the drawer. The scanner can be configured to perform inventory control for the tagged items.
Type:
Grant
Filed:
June 30, 2011
Date of Patent:
December 18, 2012
Assignee:
Neology, Inc.
Inventors:
John Azevedo, Jeffrey Zhu, Eric Mikuteit, Jun Liu
Abstract: The present invention provides a method and system for verifying and tracking identification information. In an embodiment of the invention, a system for delivering security solutions is provided that includes at least one of the following: a radio frequency (RF) identification device, an identification mechanism (e.g., a card, sticker), and an RF reader.
Type:
Grant
Filed:
May 4, 2012
Date of Patent:
December 4, 2012
Assignee:
Neology, Inc.
Inventors:
Francisco Martinez de Velasco Cortina, Manfred Rietzler
Abstract: A method for secure cryptographic communication comprises transmitting information that identifies a group key from a first device to a second device. The method further comprises, in the first device, using the group key to encrypt an input vector, transmitting the encrypted input vector, encrypting privacy-sensitive information using a device key, an encryption algorithm, and the input vector, and transmitting the encrypted privacy-sensitive information to the second device.
Abstract: The present invention provides a method and system for verifying and tracking identification information. In an embodiment of the invention, a system for delivering security solutions is provided that includes at least one of the following: a radio frequency (RF) identification device, an identification mechanism (e.g., a card, sticker), and an RF reader.
Type:
Grant
Filed:
July 1, 2011
Date of Patent:
August 7, 2012
Assignee:
Neology, Inc.
Inventors:
Francisco Martinez de Velasco Cortina, Manfred Rietzler
Abstract: A breakaway RFID tag is configured such that it comprises part of a Printed Circuit Board Assembly (PCB). Thus, the breakaway RFID tag can be used to track the PCB as it migrates through a manufacturing process. In one embodiment, the RFID tag can be assembled first and then used to track the PCB as it is populated with components and installed into larger assemblies and ultimately into the end device. Once the PCB is installed into a larger assembly or the end device, the breakaway RFID tag is configured such that it can be broken off and attached to the outside of the larger assembly or end device.
Abstract: A multi-document read-write station provides the ability to read/write to a stack of Radio Frequency Identification (RFID) tags within a small area. Specifically, the station provides the ability to read from and write to a tall stack of RFID tagged sheets with the RFID tags stacked one on top of the other. The station and capability described herein is the result of and comprises several components including a closed chamber comprising a document slot, an antenna system, and a power management system.
Type:
Grant
Filed:
June 21, 2007
Date of Patent:
January 17, 2012
Assignee:
Neology, Inc.
Inventors:
John Azevedo, Rodolfo Monsalvo, Jun Liu
Abstract: The present invention provides a method and system for verifying and tracking identification information. In an embodiment of the invention, a system for delivering security solutions is provided that includes at least one of the following: a radio frequency (RF) identification device, an identification mechanism (e.g., a card, sticker), and an RF reader.
Type:
Grant
Filed:
January 15, 2010
Date of Patent:
August 23, 2011
Assignee:
Neology, Inc.
Inventors:
Francisco Martinez de Velasco Cortina, Manfred Rietzler
Abstract: A RFID cabinet comprises a cabinet structure and one or more drawers or shelves. Chambers are formed within the cabinet to house the one or more drawers or shelves. An RFID scanner is configured to scan items tagged with RFID tags in the chambers via one or more antennas. The antennas can include transmit and receive antennas or antennas configured to perform both transmit and receive functions. The drawers can have a access cover, or lid that can be controlled so as to control access to the drawer. The scanner can be configured to perform inventory control for the tagged items.
Type:
Grant
Filed:
April 7, 2009
Date of Patent:
August 9, 2011
Assignee:
Neology, Inc.
Inventors:
John Azevedo, Jeffrey Zhu, Eric Mikuteit, Jun Liu
Abstract: RFID tags are used for many purpose including tracking. RFID interrogators are used to retrieve information from tags. In many applications, RFID interrogators and RFID tags remain stationary during interrogation. Regions of low energy due to interference from either additional antenna or reflections from RFID tags and objects can impede or prohibit the reading of RFID tags residing in such regions. Stirring of the generated electromagnetic field is a method of moving around the regions of low energy, where tags can not be read, during the interrogation process. Mechanical stirring is accomplished by introducing a conductor into the electromagnetic field and moving it about in the field. Solid state stirring is accomplished by introducing a variable conductor into the field and varying the conductivity of the variable conductor. Mathematical stirring is accomplished by use of a plurality of antenna and controlling the phase difference between the antenna in a configuration known as phased antenna arrays.
Abstract: Systems and methods for an RF nulling scheme are provided. An RF nulling scheme can minimize the level of unwanted RF signal reflections entering the receiver without attenuating the desired signal response from an RFID tag. In one aspect of the RF nulling scheme a synthesizer signal can be split between a main path and a nulling path. In the nulling path the signal from the splitter can be routed through an electronically variable phase shifter and variable gain amplifier to create a nulling signal. The nulling signal can cancel the unwanted reflected signal. The phase or amplitude of the nulling signal can then be adjusted to improve cancellation as necessary.
Abstract: A method for mutual authentication in an RFID system comprising an RFID reader and an RFID tag, the method comprising requesting an identification from the tag, receiving the identification, using the received identification to select a password associated with the identification, generating a password key based on the selected password, encrypting the selected password using the password key, and transmitting the encrypted password to the tag.
Abstract: The present invention provides a method and system for verifying and tracking identification information. In an embodiment of the invention, a system for delivering security solutions is provided that includes at least one of the following: a radio frequency (RF) identification device, an identification mechanism (e.g., a card, sticker), and an RF reader.
Type:
Grant
Filed:
April 17, 2006
Date of Patent:
March 2, 2010
Assignee:
Neology, Inc.
Inventors:
Francisco Martinez de Velasco Cortina, Manfred Rietzler
Abstract: A RFID cabinet comprises a cabinet structure and one or more drawers or shelves. Chambers are formed within the cabinet to house the one or more drawers or shelves. An RFID scanner is configured to scan items tagged with RFID tags in the chambers via one or more antennas. The antennas can include transmit and receive antennas or antennas configured to perform both transmit and receive functions. The drawers can have a access cover, or lid that can be controlled so as to control access to the drawer. The scanner can be configured to perform inventory control for the tagged items.
Type:
Grant
Filed:
March 27, 2007
Date of Patent:
April 14, 2009
Assignee:
Neology, Inc.
Inventors:
John Azevedo, Jeffrey Zhu, Eric Mikuteit, Jason Liu
Abstract: The present invention comprises a radio frequency identification device that utilizes multiple operating frequencies. In one embodiment of the present invention, one frequency (e.g., an ultra-high frequency such as 915 MHz, 800 MHz, 915 MHz, or microwave frequency such as 2.45 GHz) is used for data transmission, and another frequency (e.g., a low or high frequency such as 13.56 MHz) is used for field penetration. In another embodiment, one frequency is used for reading information received from the multi-frequency identification device, and another frequency is used for writing to the multi-frequency identification device. In an additional embodiment, the multi-frequency identification device utilizes one antenna for all frequencies. In another embodiment, the multi-frequency identification device utilizes two or more antennas for different frequencies, and one common memory. In other embodiments, one or two digital parts, analog parts, antennas, and memories can be used.
Type:
Grant
Filed:
August 15, 2008
Date of Patent:
May 8, 2012
Assignee:
Neology, Inc.
Inventors:
Francisco Martinez de Velasco Cortina, Manfred Rietzler
Abstract: The present invention provides systems and methods for transmitting and receiving information from a radio frequency (RF) transponder. A conductive adhesive connects an antenna in a non-metallized region to a metallized region. This feature transforms the entire metallized region of the radio frequency device (i.e., the remainder of the metallized material outside the non-metallized region) into an antenna.
Abstract: The present invention provides systems and methods for transmitting and receiving information from a radio frequency (RF) transponder. A conductive adhesive connects an antenna in a non-metallized region to a metallized region. This feature transforms the entire metallized region of the radio frequency device (i.e., the remainder of the metallized material outside the non-metallized region) into an antenna.