Patents Assigned to NeoVision, LLC
  • Patent number: 9528814
    Abstract: An apparatus for, and methods of use for, measuring film thickness on an underlying body are provided. The apparatus may include at least one Impedance Resonance (IR) sensor, which may include at least one sensing head. The at least one sensing head may include an inductor having at least one excitation coil and at least one sensing coil. The excitation coil may propagate energy to the sensing coil so that the sensing coil may generate a probing electromagnetic field. The apparatus may also include at least one power supply, at least one RF sweep generator electrically connected to the excitation coil; at least one data acquisition block electrically connected to the sensing coil; at least one calculation block; and at least one communication block. Methods of monitoring conductive, semiconductive or non-conductive film thickness, and various tools for Chemical Mechanical Polishing/Planarization (CMP), etching, deposition and stand-alone metrology are also provided.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: December 27, 2016
    Assignee: NeoVision, LLC
    Inventors: Yury Nikolenko, Matthew Fauss
  • Patent number: 9465089
    Abstract: Processes and apparatuses are provided for contactless Nuclear magnetic resonance (“NMR”) spectrum acquiring and spectroscopic analysis and/or measuring or monitoring, in-line, in-situ and/or in real time, at least one composition or object under test of one or more solid, liquid, and/or gaseous substances and/or one or more bulk materials. One or more apparatus may include a resonance type impedance sensor having at least two coils, at least one coil of the at least two coils being at least one excitation coil, at least one other coil of the at least two coils being at least one sensing coil. The method(s) involve acquiring an NMR spectrum of an object under test while changing at least one of the frequency of an IR sensor and the intensity of the magnetic field applied to an object under test and/or sweeping intensity of the magnetic field applied to the object under test.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 11, 2016
    Assignee: NeoVision LLC
    Inventor: Yury Nikolenko
  • Patent number: 8952708
    Abstract: Processes and apparatuses are provided for contactless measuring or monitoring in-situ and in real time composition or other electromagnetic impedance correlated properties of liquid or gaseous substances or bulk materials. One or more apparatus may include a resonance type impedance sensor having at least two coils, at least one coil of the at least two coils being at least one excitation coil connectable to at least one alternating current source with frequency sweep, at least one other coil of the at least two coils being at least one sensing coil connectable to at least one data processing system. The one or more methods may include calculating changes in amplitude and resonant frequency induced by electromagnetic interaction between said sensor and object to determine impedance of said object under test; and matching said impedance with predetermined calibration data to determine said chemical or physical properties of said object under test.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: February 10, 2015
    Assignee: NeoVision LLC
    Inventor: Yury Nikolenko
  • Publication number: 20130141095
    Abstract: Processes and apparatuses are provided for contactless Nuclear magnetic resonance (“NMR”) spectrum acquiring and spectroscopic analysis and/or measuring or monitoring, in-line, in-situ and/or in real time, at least one composition or object under test of one or more solid, liquid, and/or gaseous substances and/or one or more bulk materials. One or more apparatus may include a resonance type impedance sensor having at least two coils, at least one coil of the at least two coils being at least one excitation coil, at least one other coil of the at least two coils being at least one sensing coil. The method(s) involve acquiring an NMR spectrum of an object under test while changing at least one of the frequency of an IR sensor and the intensity of the magnetic field applied to an object under test and/or sweeping intensity of the magnetic field applied to the object under test.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 6, 2013
    Applicant: NeoVision LLC
    Inventor: NeoVision LLC
  • Publication number: 20130141117
    Abstract: Processes and apparatuses are provided for contactless measuring or monitoring in-situ and in real time composition or other electromagnetic impedance correlated properties of liquid or gaseous substances or bulk materials. One or more apparatus may include a resonance type impedance sensor having at least two coils, at least one coil of the at least two coils being at least one excitation coil connectable to at least one alternating current source with frequency sweep, at least one other coil of the at least two coils being at least one sensing coil connectable to at least one data processing system. The one or more methods may include calculating changes in amplitude and resonant frequency induced by electromagnetic interaction between said sensor and object to determine impedance of said object under test; and matching said impedance with predetermined calibration data to determine said chemical or physical properties of said object under test.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 6, 2013
    Applicant: NeoVision LLC
    Inventor: NeoVision LLC
  • Publication number: 20120293188
    Abstract: An apparatus for, and methods of use for, measuring film thickness on an underlying body are provided. The apparatus may include at least one Impedance Resonance (IR) sensor, which may include at least one sensing head. The at least one sensing head may include an inductor having at least one excitation coil and at least one sensing coil. The excitation coil may propagate energy to the sensing coil so that the sensing coil may generate a probing electromagnetic field. The apparatus may also include at least one power supply, at least one RF sweep generator electrically connected to the excitation coil; at least one data acquisition block electrically connected to the sensing coil; at least one calculation block; and at least one communication block. Methods of monitoring conductive, semiconductive or non-conductive film thickness, and various tools for Chemical Mechanical Polishing/Planarization (CMP), etching, deposition and stand-alone metrology are also provided.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: NeoVision, LLC
    Inventors: Yury Nikolenko, Matthew Fauss