Patents Assigned to Netherlands B.V.
  • Publication number: 20240094640
    Abstract: A method for determining a spatially varying process offset for a lithographic process, the spatially varying process offset (MTD) varying over a substrate subject to the lithographic process to form one or more structures thereon. The method includes obtaining a trained model (MOD), having been trained to predict first metrology data based on second metrology data, wherein the first metrology data (OV) is spatially varying metrology data which relates to a first type of measurement of the one or more structures being a measure of yield and the second metrology data (PB) is spatially varying metrology data which relates to a second type of measurement of the one or more structures and correlates with the first metrology data; and using the model to obtain the spatially varying process offset (MTD).
    Type: Application
    Filed: January 21, 2022
    Publication date: March 21, 2024
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Thiago DOS SANTOS GUZELLA, Masashi ISHIBASHI, NoriaKi SANNO, Vahid BASTANI, Reza SAHRAEIAN, Putra SAPUTRA
  • Publication number: 20240094641
    Abstract: The system includes a radiation source, a diffractive element, an optical system, a detector, and a processor. The radiation source generates radiation. The diffractive element diffracts the radiation to generate a first beam and a second beam. The first beam includes a first non-zero diffraction order and the second beam includes a second non-zero diffraction order that is different from the first non-zero diffraction order. The optical system receives a first scattered beam and a second scattered radiation beam from a target structure and directs the first scattered beam and the second scattered beam towards a detector. The detector generates a detection signal. The processor analyzes the detection signal to determine a target structure property based on at least the detection signal. The first beam is attenuated with respect to the second beam or the first scattered beam is purposely attenuated with respect to the second scattered beam.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 21, 2024
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Justin Lloyd KREUZER, Simon Reinald HUISMAN, Sebastianus Adrianus GOORDEN, Filippo ALPEGGIANI
  • Publication number: 20240096589
    Abstract: A detector may be provided for a charged particle apparatus comprising: a sensing element including a diode; and a circuit configured to detect an electron event caused by an electron impacting the sensing element, wherein the circuit comprises a voltage monitoring device and a reset device, wherein the reset device is configured to regularly reset the diode by setting a voltage across the diode to a predetermined value, and wherein the voltage monitoring device is connected to the diode to monitor a voltage across the diode in between resets.
    Type: Application
    Filed: October 26, 2021
    Publication date: March 21, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Stoyan NIHTIANOV, Kenichi KANAI, Padmakumar RAMACHANDRA RAO
  • Publication number: 20240094643
    Abstract: A method for measuring a parameter of interest from a target and associated apparatuses. The method includes obtaining measurement acquisition data relating to measurement of the target and finite-size effect correction data and/or a trained model operable to correct for at least finite-size effects in the measurement acquisition data. At least finite-size effects in the measurement acquisition data is corrected for using the finite-size effect correction data and/or the trained model to obtain corrected measurement data and/or obtain a parameter of interest; and where the correcting does not directly determine the parameter of interest, determining the parameter of interest from the corrected measurement data.
    Type: Application
    Filed: December 20, 2021
    Publication date: March 21, 2024
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Filippo ALPEGGIANI, Harm Jan Willem BELT, Sebatianus Adrianus GOORDEN, Irwan Dani SETIJA, Simon Reinald HUISMAN, Henricus Petrus Maria PELLEMANS
  • Patent number: 11932571
    Abstract: Radiation curable compositions for coating optical fibers are disclosed herein. In an embodiment, a radiation curable composition includes a reactive oligomer component, wherein a portion of the polymerizable groups of the reactive oligomer component include methacrylate groups; a reactive diluent monomer component, wherein a portion of the polymerizable groups of the reactive diluent monomer component include acrylate groups, acrylamide groups, or N-vinyl amide groups, or combinations thereof; a photoinitiator component, and an optional additive component. Also described are methods of coating the radiation curable compositions elsewhere described, and the fiber optic coatings and cables resulting therefrom.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: March 19, 2024
    Assignee: Covestro (Netherland) B.V.
    Inventor: Johan Franz Gradus Antonius Jansen
  • Patent number: 11935764
    Abstract: The invention relates to a sawing device for forming saw-cuts into a semiconductor product, including: a carrier for holding the semiconductor product, a saw blade, a first position sensor for determining the position of the semiconductor product held by the carrier, a second position sensor for determining the position of the saw blade, and a control unit configured for controlling the relative movement of the saw blade and the carrier, wherein the sawing device further includes a reference for linking the position of the first position sensor to the position of the second position sensor, wherein the control unit is configured to process, with aid of the reference, the positions determined by the reference sensors into a position of the point on the free surface of the semiconductor product relative to the point on the cutting edge of the saw blade, and, based on this positional information, control the relative movement of the saw blade and the carrier.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: March 19, 2024
    Assignee: Besi Netherlands B.V.
    Inventor: Mark Hermans
  • Patent number: 11932716
    Abstract: There is provided a radiation-curable resin composition for formation of a primary covering layer, the radiation-curable resin composition being able to form a cured layer having excellent flexibility and adequate mechanical strength. A radiation-curable resin composition for formation of a primary covering layer of an optical fiber, comprising a urethane oligomer, a polymerization initiator and a free-radically polymerizable non-urethane monomer, the urethane oligomer being the reaction product of a polyether-based urethane prepolymer and an isocyanate reactive compound containing one active hydrogen group, the isocyanate reactive compound containing an aliphatic alcohol and an ethylenic unsaturated group-containing isocyanate reactive compound, and the aliphatic alcohol content in the isocyanate reactive compound being 24 mol % or higher.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: March 19, 2024
    Assignee: Covestro (Netherlands) B.V.
    Inventors: Noriyasu Shinohara, Seiichirou Takahashi
  • Publication number: 20240085809
    Abstract: A reticle transport system having a magnetically levitated transportation stage is disclosed. Such a system may be suitable for use in vacuum environments, for example, ultra-clean vacuum environments.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicants: Massachusetts Institute of Technology, ASML Netherlands B.V.
    Inventors: Lei ZHOU, David L. TRUMPER, Ruvinda GUNAWARDANA
  • Publication number: 20240085379
    Abstract: A metrology apparatus for determining one or more parameters of a structure fabricated in or on a semiconductor substrate. The apparatus comprises a transducer array comprising a plurality of transducers positioned in a plane. The plurality of transducers comprises at least one transmitter transducer for emitting acoustic radiation in a frequency range from 1 GHz to 100 GHz towards the structure, and at least one receiver transducer for receiving acoustic radiation reflected and/or diffracted from the structure.
    Type: Application
    Filed: December 15, 2021
    Publication date: March 14, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Mustafa Ümit ARABUL, Zili ZHOU, Willem Marie,Julia,Marcel COENE, Coen Adrianus VERSCHUREN, Paul, Louis,Maria Joseph VAN NEER, Daniele PIRAS, Sandra BLAAK, Wouter Dick KOEK, Robert Wilhelm WILLEKERS
  • Publication number: 20240087844
    Abstract: The disclosed embodiments provide a various techniques for detecting secondary charged particles and backscatter charged particles, including accelerating charged particle sub-beams along sub-beam paths to a sample, repelling secondary charged particles from detector arrays, using mirror detector arrays, using multiple detector arrays, and providing devices and detectors which can switch between modes for primarily detecting charged particles and modes for primarily detecting secondary particles.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Applicant: ASML Netherlands B.V.
    Inventor: Albertus Victor Gerardus MANGNUS
  • Publication number: 20240087835
    Abstract: The present disclosure provides a charged particle optical device for a charged particle system. The device projects an array of charged particle beams towards a sample. The device comprises a control lens array to control a parameter of the array of beams; and an objective lens array to project the array of beams onto the sample, the objective lens array being down beam of the control lens. The objective lens array comprises: an upper electrode; and a lower electrode arrangement that comprises an up-beam electrode and a down-beam electrode. The device is configured to apply an upper potential to the upper electrode, an up-beam potential to the up-beam electrode and a down-beam potential to the down-beam electrode. The potentials are controlled to control the landing energy of the beams on the sample and. to maintain focus of the beams on the sample at the landing energies.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: ASML Netherlands B.V.
    Inventor: Albertus Victor Gerardus MANGNUS
  • Publication number: 20240087842
    Abstract: A data processing device for detecting defects in sample images generated by a charged particle assessment system, the device comprising: an input module, a filter module, a reference image module and a comparator. The input module is configured to receive a sample image from the charged particle assessment system. The filter module is configured to apply a filter to the sample image to generate a filtered sample image. The reference image module is configured to provide a reference image based on one or more source images. The comparator is configured to compare the filtered sample image to the reference image so as to detect defects in the sample image.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Marco Jan-Jaco WIELAND, Vincent Sylvester KUIPER
  • Publication number: 20240085796
    Abstract: An extreme ultraviolet radiation (EUV) source, including: a vessel having an inner vessel wall and an intermediate focus (IF) region; an EUV collector disposed inside the vessel, the EUV collector including a reflective surface configured to reflect EUV radiation toward the intermediate focus region, the reflective surface configured to directionally face the IF region of the vessel; a showerhead disposed along at least a portion of the inner vessel wall, the showerhead including a plurality of nozzles configured to introduce gas into the vessel; and one or more exhausts configured to remove gas introduced into the vessel, the one or more exhausts being oriented along at least a portion of the inner vessel wall so that the gas is caused to flow away from the EUV collector.
    Type: Application
    Filed: October 16, 2023
    Publication date: March 14, 2024
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Dzmitry LABETSKI, Christianus Wilhelmus Johannes BERENDSEN, Rui Miguel DUARTE RODRIGUES NUNES, Alexander Igorevich ERSHOV, Kornelis Frits FEENSTRA, Igor Vladimirovich FOMENKOV, Klaus Martin HUMMLER, Arun JOHNKADAKSHAM, Matthias KRAUSHAAR, Andrew David LAFORGE, Marc Guy LANGLOIS, Maksim LOGINOV, Yue MA, Seyedmohammad MOJAB, Kerim NADIR, Alexander SHATALOV, John Tom STEWART, Henricus Gerardus TEGENBOSCH, Chunguang XIA
  • Patent number: 11927891
    Abstract: A sensor is disclosed, wherein a transducer generates acoustic waves, which are received by a lens assembly. The lens assembly transmits and directs at least a part of the acoustic waves to a target. The lens assembly then receives at least a part of acoustic waves, after interaction with the target. The sensor further comprises an optical detector that comprises at least one optically reflective member located at a surface of the lens assembly, which surface is arranged opposite to a surface of the lens assembly which faces a focal plane of the lens assembly, wherein the at least one optically reflective member is mechanically displaced in response to the acoustic waves, which are received and transmitted by the lens assembly.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 12, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Nitesh Pandey, Duygu Akbulut, Alessandro Polo, Sebastianus Adrianus Goorden
  • Patent number: 11929232
    Abstract: Systems and methods for implementing charged particle flooding in a charged particle beam apparatus are disclosed. According to certain embodiments, a charged particle beam system includes a charged particle source and a controller which controls the charged particle beam system to emit a charged particle beam in a first mode where the beam is defocused and a second mode where the beam is focused on a surface of a sample.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: March 12, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Frank Nan Zhang, Zhongwei Chen, Yixiang Wang, Ying Crystal Shen
  • Patent number: 11926262
    Abstract: Adjusting instrument for an exterior vision unit for a vehicle, comprising a base, a foot and a pivoting shaft extending therefrom along a longitudinal axis, and a housing surrounding the pivoting shaft and pivotable around the longitudinal axis in an adjustment range, between at least a park position and a work position. The base and the housing cooperate via cams which interlock in the work position so that the housing is in a stable axial ground position with respect to the foot. The cams, upon pivoting of the housing relative to the base, move apart from the work position along the longitudinal axis, and upon further pivoting are supported on each other, so that the housing is in an axially further removed position with respect to the foot. The adjusting instrument is provided with a detector configured to verify that the housing is in the stable axial ground position.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: March 12, 2024
    Assignee: MCi (Mirror Controls International) Netherlands B.V.
    Inventors: Rudolf Pieter Hoogenboom, Jannick Daniël Wijntjes, Jeyakrishna Sridhar
  • Patent number: 11927892
    Abstract: Disclosed is a substrate, associated patterning device and a method for measuring a position of the substrate. The method comprises performing an alignment scan of an alignment mark to obtain simultaneously: a first measurement signal detected in a first measurement channel and a second measurement signal detected in a second measurement channel. The first and second measurement signals are processed by subtracting a first direction component of the first measurement signal from a first direction component of the second measurement signal to obtain a first processed signal, the first direction components relating to said first direction. The position of an alignment mark is determined with respect to the first direction from the first processed signal.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: March 12, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Franciscus Godefridus Casper Bijnen, Edo Maria Hulsebos
  • Publication number: 20240079204
    Abstract: A method of detecting charged particles may include detecting beam intensity as a primary charged particle beam moves along a first direction; acquiring a secondary beam spot projection pattern as the primary charged particle beam moves along a second direction; and determining a parameter of a secondary beam spot based on the acquired secondary beam spot projection pattern. A method of compensating for beam spot changes on a detector may include acquiring a beam spot projection pattern on the detector, determining a change of the beam spot projection pattern, and adjusting a parameter of a detector cell of the detector based on the change. Another method may be provided for forming virtual apertures with respect to detector cells of a detector.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 7, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Yongxin WANG, Oleg KRUPIN, Weiming REN, Xuerang HU, Xuedong LIU
  • Publication number: 20240079205
    Abstract: Assessment systems and methods are disclosed. In one arrangement, charged particles are directed in sub-beams arranged in a multi-beam towards a sample. A plurality of control electrodes define a control lens array. Each control lens in the control lens array is aligned with a sub-beam path of a respective sub-beam of the multi-beam and configured to operate on the respective sub-beam. A plurality of objective electrodes define an objective lens array that directs the sub-beams onto a sample. Objective lenses are aligned with a sub-beam path aligned with a respective control lens. Selectable landing energies are implemented for a sub-beam of the multi-beam by applying corresponding potentials to the control electrodes and the objective electrodes. A controller is configured to select corresponding potentials so a spatial relationship between an image plane of the system and all control electrodes and objective electrodes is the same for each selectable landing energy.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Applicant: ASML Netherlands B.V.
    Inventor: Marco Jan-Jaco WIELAND
  • Publication number: 20240077803
    Abstract: Systems, apparatuses, and methods are provided for heating a plurality of optical components. An example method can include receiving an input radiation beam from a radiation source. The example method can further include generating a plurality of output radiation beams based on the input radiation beam. The example method can further include transmitting the plurality of output radiation beams towards a plurality of heater head optics configured to heat the plurality of optical components. Optionally, the example method can further include controlling a respective power value, and realizing a flat-top far-field profile, of each of the plurality of output radiation beams.
    Type: Application
    Filed: December 30, 2021
    Publication date: March 7, 2024
    Applicants: ASML NETHERLANDS B.V., ASML Holding N.V.
    Inventors: Laurentius Johannes Adrianus VAN BOKHOVEN, Mahesh Upendra AJGAONKAR