Abstract: System and methods are disclosed for identifying as well as distinguishing between cerebrovascular abnormalities. The system comprises a medical imaging device configured for capturing plurality of images of a cerebrovascular region of a subject and communicating the same to a computing device. The computing device comprises one or more modules configured for extracting features from the captured images, grouping the cerebrovascular region into one of blood vessel type and non-blood vessel type and further extracting features associated with the blood vessels to classify each point on the blood vessel into one of a non-branching, converging and diverging type. The system further comprises a user interface for interactively viewing the results of the classification thereby providing a means to identify cerebrovascular abnormalities.
Abstract: System and methods are disclosed for identifying as well as distinguishing between cerebrovascular abnormalities. The system comprises a medical imaging device configured for capturing plurality of images of a cerebrovascular region of a subject and communicating the same to a computing device. The computing device comprises one or more modules configured for extracting features from the captured images, grouping the cerebrovascular region into one of blood vessel type and non-blood vessel type and further extracting features associated with the blood vessels to classify each point on the blood vessel into one of a non-branching, converging and diverging type. The system further comprises a user interface for interactively viewing the results of the classification thereby providing a means to identify cerebrovascular abnormalities.
Abstract: System and method for monitoring motor recovery in a post-stroke treatment is disclosed. Motor activity data corresponding to limbs movement is collected during an acute stroke period. The motor activity data is transmitted to at least one base station and an activity value for each arm of two arms is calculated in a predefined time window by using the motor activity data. The activity value for each arm is compared thus providing the monitoring of the motor activity.
Abstract: A system for identification of one or more neuro-cardiological disturbances of a subject in a post-acute stroke treatment and in the intensive care setting is provided. The system includes a wearable device configured for capturing data associated with a neural and heart activity. The wearable device includes a first electrode and a second electrode configured for measuring an electrical activity of a heart to generate a first signal. The wearable device also includes an accelerometer configured for detecting and acquiring neural accelerometry data to generate a second signal. Moreover, the system includes a processor with a memory.