Abstract: In one example in accordance with the present disclosure, an emitter system is described. The emitter system includes an array of emitters. Each emitter emits waves towards a target surface. The emitter system also includes a control system. The control system includes a sensing system to determine whether emitters in the array are properly positioned relative to the target surface. A controller of the control system adjusts emitter sets of the array of emitters based on an output of the sensing system.
Abstract: In one example in accordance with the present disclosure a method is described. According to the method, an emitter of a transcranial electromagnetic treatment (TEMT) system is positioned at a location relative to a head of a patient such that the emitter emits an electromagnetic frequency signal toward the head of the patient. The emitter is activated to apply TEMT to the patient to treat amyloid oligomers. In some examples, the TEMT has a frequency between 1 MHz and 430 THz.
Abstract: In one example in accordance with the present disclosure a method of normalizing cytokine levels in a blood stream of a subject is described. According to the method, an array of electromagnetic emitters is positioned proximal to the subject. An electromagnetic wave generator generates electromagnetic fields having a predetermined frequency. Cytokine levels are normalized in the blood stream of the subject by applying the electromagnetic fields to the subject through the electromagnetic emitters.
Abstract: In one example in accordance with the present disclosure, an antenna system is described. The antenna system includes an array of antennas. Each antenna emits electromagnetic waves and is presented with a load that is different from other antennas in the array. The antenna system also includes a control system. The control system includes a single transmitter to sequentially drive antenna sets, a switching device to select, for each activation period in an activation sequence, an antenna set to be driven, and a controller. The controller determines an actual power output of each antenna and generates an adjusted control signal for the single transmitter such that the output of each antenna is controlled to match a target power for that antenna, regardless of a load for the antenna.
Abstract: Disclosed are devices, methods, and systems for helping to prevent (or preventing) or treat brain and/or body disorders. Embodiments of the invention have utility for enhancing cognitive function during aging. The invention utilizes electromagnetic stimulation (EMS) that can provide a range of EMS parameters and modalities. The EMS may be utilized in conjunction with physiologic sensors that can provide feedback for possible EMS modifications.
Type:
Grant
Filed:
March 11, 2014
Date of Patent:
September 8, 2020
Assignee:
NeuroEM Therapeutics, Inc.
Inventors:
Gary W. Arendash, Jon W. McGarity, Lyle R. Scritsmier