Patents Assigned to Neurolens, Inc.
  • Publication number: 20240407648
    Abstract: A system to determine a binocular alignment, comprises a first optical unit, including a first display, to display images for a first eye, actuatable along a longitudinal direction according to a simulated distance and an optical power of the first eye, and a first eye tracker assembly, to track a gaze direction of the first eye, adjustable in a horizontal lateral direction to accommodate a pupillary distance of the first eye; and a second optical unit, including a second display, to display images for a second eye, actuatable along the longitudinal direction according to a simulated distance and an optical power of the second eye, and a second eye tracker assembly, to track a gaze direction of the second eye, adjustable in the horizontal lateral direction to accommodate a pupillary distance of the second eye; and a computer, to determine the binocular alignment based on the gaze directions.
    Type: Application
    Filed: August 19, 2024
    Publication date: December 12, 2024
    Applicant: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley, Ronnie Barnard, Zachary Dios, Thomas Henry Holt, Vivek Labhishetty, Ali Jiong-Fung Lee, Ferenc Raksi, Jason Robert Ryan
  • Publication number: 20240393618
    Abstract: A contour prism progressive lens has a position dependent optical power and a position dependent horizontal prism, and a distance-vision reference point and a near-vision reference point. It is characterized by a coordinate system with its vertical axis running through the distance-vision reference point and has an optical power at the near-vision power reference point that exceeds the optical power at the distance-vision reference point by a value between 0.25 diopter and 1.0 diopter. The horizontal prism on the vertical axis at a vertical coordinate of the near-vision reference point differs from the horizontal prism at the distance-vision reference point by more than 0.2 prism diopter base-in; and the optical power along a horizontal crosscut of the contour prism progressive lens through the near-vision reference point has a broad maximum where the region where the optical power is at least 85% of its peak is at least 5 mm wide.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 28, 2024
    Applicant: Neurolens, Inc.
    Inventors: Jason Robert Ryan, Ferenc Raksi
  • Publication number: 20240393619
    Abstract: A contour prism lens, having a position dependent optical power and a position dependent horizontal prism, and having a distance-vision reference point and a near-vision reference point, the contour prism lens being characterized by a coordinate system with its vertical axis running through the distance-vision reference point, wherein: the optical power at the near-vision reference point exceeds the optical power at the distance-vision reference point by less than 0.5 diopter; the horizontal prism on the vertical axis at a vertical coordinate of the near-vision reference point differs from the horizontal prism at the distance-vision reference point by more than 0.2 prism diopter base-in; and the optical power along a horizontal crosscut of the contour prism lens through the near-vision reference point has a power plateau, where the optical power remains within a 0.1 diopter wide range throughout a horizontal region at least 5 mm wide, comprising the near-vision reference point.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 28, 2024
    Applicant: Neurolens, Inc.
    Inventors: Jason Robert Ryan, Ferenc Raksi
  • Patent number: 12121300
    Abstract: A Progressive Lens Simulator comprises an Eye Tracker, for tracking an eye axis direction to determine a gaze distance, an Off-Axis Progressive Lens Simulator, for generating an Off-Axis progressive lens simulation; and an Axial Power-Distance Simulator, for simulating a progressive lens power in the eye axis direction. The Progressive Lens Simulator can alternatively include an Integrated Progressive Lens Simulator, for creating a Comprehensive Progressive Lens Simulation. The Progressive Lens Simulator can be Head-mounted. A Guided Lens Design Exploration System for the Progressive Lens Simulator can include a Progressive Lens Simulator, a Feedback-Control Interface, and a Progressive Lens Design processor, to generate a modified progressive lens simulation for the patient after a guided modification of the progressive lens design. A Deep Learning Method for an Artificial Intelligence Engine can be used for a Progressive Lens Design Processor.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: October 22, 2024
    Assignee: Neurolens, Inc.
    Inventor: Gergely T. Zimanyi
  • Patent number: 12114930
    Abstract: A system to determine a binocular alignment, comprises a first optical unit, including a first display, to display images for a first eye, actuatable along a longitudinal direction according to a simulated distance and an optical power of the first eye, and a first eye tracker assembly, to track a gaze direction of the first eye, adjustable in a horizontal lateral direction to accommodate a pupillary distance of the first eye; and a second optical unit, including a second display, to display images for a second eye, actuatable along the longitudinal direction according to a simulated distance and an optical power of the second eye, and a second eye tracker assembly, to track a gaze direction of the second eye, adjustable in the horizontal lateral direction to accommodate a pupillary distance of the second eye; and a computer, to determine the binocular alignment based on the gaze directions.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: October 15, 2024
    Assignee: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley, Ronnie Barnard, Zachary Dios, Thomas Henry Holt, Vivek Labhishetty, Ali Jiong-Fung Lee, Ferenc Raksi, Jason Robert Ryan
  • Publication number: 20240335109
    Abstract: A method for determining a binocular dynamic alignment can include the following steps: causing a patient to gaze at a starting target with a left eye and a right eye, with a display; shifting the target in a first direction by a first target shift angle at a first target shift time, with the display; measuring a first dynamic alignment differential between the left eye and the right eye acquiring the first-shifted target, with an eye tracker; shifting the first-shifted target in a second direction at a second target shift time, with the display; measuring a second dynamic alignment differential between the left eye and the right eye acquiring the second-shifted target with the eye tracker; determining an average dynamic alignment differential from the first dynamic alignment differential and the second alignment differential, with a computer; and determining a prescription prism to reduce the average dynamic alignment differential.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 10, 2024
    Applicant: Neurolens, Inc.
    Inventors: John Merrill Davis, III, Jeffrey P. Krall
  • Publication number: 20240148246
    Abstract: Embodiments of the invention include a method to determine a binocular alignment, the method comprising: measuring a disassociated phoria of a first eye and a second eye of a patient at an apparent distance; and determining an accommodative convergence of the first eye and the second eye at the apparent distance using the measured disassociated phoria. In other embodiments, a system to determine a binocular alignment comprises a stereo display, for a projection of images for a first eye and a second eye; an accommodation optics, to modify the projection of the images according to an apparent distance; an eye tracker, to track an orientation of the first eye and the second eye; and a computer, coupled to the stereo display, the accommodation optics and the eye tracker, to manage a determination of the binocular alignment.
    Type: Application
    Filed: January 17, 2024
    Publication date: May 9, 2024
    Applicant: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley
  • Patent number: 11903645
    Abstract: Embodiments of the invention include a method to determine a binocular alignment, the method comprising: measuring a disassociated phoria of a first eye and a second eye of a patient at an apparent distance; and determining an accommodative convergence of the first eye and the second eye at the apparent distance using the measured disassociated phoria. In other embodiments, a system to determine a binocular alignment comprises a stereo display, for a projection of images for a first eye and a second eye; an accommodation optics, to modify the projection of the images according to an apparent distance; an eye tracker, to track an orientation of the first eye and the second eye; and a computer, coupled to the stereo display, the accommodation optics and the eye tracker, to manage a determination of the binocular alignment.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: February 20, 2024
    Assignee: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley
  • Publication number: 20230414100
    Abstract: A method to determine a binocular alignment includes measuring a disassociated phoria of a patient at a first simulated distance by presenting fusible images including targets with a first parallax corresponding to the first simulated distance, using a headset stereo display at a screen distance; presenting non-fusible images by presenting the target for a first eye with the first parallax and presenting a disassociated targetless image for a second eye, and measuring the disassociated phoria in response to the presenting of non-fusible images, using an eye tracker of the headset; and determining a vergence of the patient at the first simulated distance by presenting fusible images for the first and second eyes with the first parallax, corrected with the measured disassociated phoria; measuring an associated phoria in response to the presenting of fusible images; and determining the vergence as a combination of the disassociated phoria and the associated phoria.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Applicant: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley, Zachary Dios, Ferenc Raksi, Vivek Labhishetty, John Williams Burns Moody, Ronnie Barnard
  • Publication number: 20230114699
    Abstract: A Progressive Lens Simulator comprises an Eye Tracker, for tracking an eye axis direction to determine a gaze distance, an Off-Axis Progressive Lens Simulator, for generating an Off-Axis progressive lens simulation; and an Axial Power-Distance Simulator, for simulating a progressive lens power in the eye axis direction. The Progressive Lens Simulator can alternatively include an Integrated Progressive Lens Simulator, for creating a Comprehensive Progressive Lens Simulation. The Progressive Lens Simulator can be Head-mounted. A Guided Lens Design Exploration System for the Progressive Lens Simulator can include a Progressive Lens Simulator, a Feedback-Control Interface, and a Progressive Lens Design processor, to generate a modified progressive lens simulation for the patient after a guided modification of the progressive lens design. A Deep Learning Method for an Artificial Intelligence Engine can be used for a Progressive Lens Design Processor.
    Type: Application
    Filed: December 15, 2022
    Publication date: April 13, 2023
    Applicant: Neurolens, Inc.
    Inventor: Gergely T. Zimanyi
  • Publication number: 20230116898
    Abstract: Embodiments of the invention include a method to determine a binocular alignment, the method comprising: measuring a disassociated phoria of a first eye and a second eye of a patient at an apparent distance; and determining an accommodative convergence of the first eye and the second eye at the apparent distance using the measured disassociated phoria. In other embodiments, a system to determine a binocular alignment comprises a stereo display, for a projection of images for a first eye and a second eye; an accommodation optics, to modify the projection of the images according to an apparent distance; an eye tracker, to track an orientation of the first eye and the second eye; and a computer, coupled to the stereo display, the accommodation optics and the eye tracker, to manage a determination of the binocular alignment.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley
  • Patent number: 11589745
    Abstract: Embodiments of the invention include a method to determine a binocular alignment, the method comprising: measuring a disassociated phoria of a first eye and a second eye of a patient at an apparent distance; and determining an accommodative convergence of the first eye and the second eye at the apparent distance using the measured disassociated phoria. In other embodiments, a system to determine a binocular alignment comprises a stereo display, for a projection of images for a first eye and a second eye; an accommodation optics, to modify the projection of the images according to an apparent distance; an eye tracker, to track an orientation of the first eye and the second eye; and a computer, coupled to the stereo display, the accommodation optics and the eye tracker, to manage a determination of the binocular alignment.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: February 28, 2023
    Assignee: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley
  • Patent number: 11559197
    Abstract: A Progressive Lens Simulator comprises an Eye Tracker, for tracking an eye axis direction to determine a gaze distance, an Off-Axis Progressive Lens Simulator, for generating an Off-Axis progressive lens simulation and an Axial Power-Distance Simulator, for simulating a progressive lens power in the eye axis direction. The Progressive Lens Simulator can alternatively include an integrated Progressive Lens Simulator, for creating a Comprehensive Progressive Lens Simulation. The Progressive Lens Simulator can be Head-mounted, A Guided Lens Design Exploration System for the Progressive Lens Simulator can include a Progressive Lens Simulator, a Feedback-Control Interface, and a Progressive Lens Design processor, to generate a modified progressive lens simulation for the patient after a guided modification of the progressive lens design.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: January 24, 2023
    Assignee: Neurolens, Inc.
    Inventor: Gergely T. Zimanyi
  • Patent number: 11360329
    Abstract: An eye-strain reducing lens is characterized by an x-y-z coordinate system, and includes a distance-vision region, having a negative distance-vision optical power, configured to refract a light ray, directed by a source at a distance-vision region point at a distance-vision x-distance from a center of the coordinate system, to propagate to an eye-center-representative location; and a near-vision region, having a near-vision optical power that matches the distance-vision optical power within 0.5 D, configured to refract a light ray, directed by the source at a near-vision region point at a near-vision x-distance from the center of the coordinate system, to propagate to an x-z location of the eye-center representative location at a corresponding y height; wherein the near-vision x-distance is smaller than the distance-vision x-distance.
    Type: Grant
    Filed: December 31, 2017
    Date of Patent: June 14, 2022
    Assignee: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley
  • Patent number: 11288416
    Abstract: A Progressive Lens Simulator comprises an Eye Tracker, for tracking an eye axis direction to determine a gaze distance, an Off-Axis Progressive Lens Simulator, for generating an Off-Axis progressive lens simulation; and an Axial Power-Distance Simulator, for simulating a progressive lens power in the eye axis direction. The Progressive Lens Simulator can alternatively include an Integrated Progressive Lens Simulator, for creating a Comprehensive Progressive Lens Simulation. The Progressive Lens Simulator can be Head-mounted. A Guided Lens Design Exploration System for the Progressive Lens Simulator can include a Progressive Lens Simulator, a Feedback-Control Interface, and a Progressive Lens Design processor, to generate a modified progressive lens simulation for the patient after a guided modification of the progressive lens design. A Deep Learning Method for an Artificial Intelligence Engine can be used for a Progressive Lens Design Processor.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 29, 2022
    Assignee: Neurolens, Inc.
    Inventor: Gergely T. Zimanyi
  • Patent number: 11259697
    Abstract: A Progressive Lens Simulator comprises an Eye Tracker, for tracking an eye axis direction to determine a gaze distance, an Off-Axis Progressive Lens Simulator, for generating an Off-Axis progressive lens simulation; and an Axial Power-Distance Simulator, for simulating a progressive lens power in the eye axis direction. The Progressive Lens Simulator can alternatively include an Integrated Progressive Lens Simulator, for creating a Comprehensive Progressive Lens Simulation. The Progressive Lens Simulator can be Head-mounted. A Guided Lens Design Exploration System for the Progressive Lens Simulator can include a Progressive Lens Simulator, a Feedback-Control Interface, and a Progressive Lens Design processor, to generate a modified progressive lens simulation for the patient after a guided modification of the progressive lens design.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 1, 2022
    Assignee: Neurolens, Inc.
    Inventor: Gergely T. Zimanyi
  • Patent number: 11259699
    Abstract: A Progressive Lens Simulator comprises an Eye Tracker, for tracking an eye axis direction to determine a gaze distance, an Off-Axis Progressive Lens Simulator, for generating an Off-Axis progressive lens simulation; and an Axial Power-Distance Simulator, for simulating a progressive lens power in the eye axis direction. The Progressive Lens Simulator can alternatively include an Integrated Progressive Lens Simulator, for creating a Comprehensive Progressive Lens Simulation. The Progressive Lens Simulator can be Head-mounted. A Guided Lens Design Exploration System for the Progressive Lens Simulator can include a Progressive Lens Simulator, a Feedback-Control Interface, and a Progressive Lens Design processor, to generate a modified progressive lens simulation for the patient after a guided modification of the progressive lens design. A Deep Learning Method for an Artificial Intelligence Engine can be used for a Progressive Lens Design Processor.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 1, 2022
    Assignee: Neurolens, Inc.
    Inventor: Gergely T. Zimanyi
  • Patent number: 11241151
    Abstract: A Progressive Lens Simulator comprises an Eye Tracker, for tracking an eye axis direction to determine a gaze distance, an Off-Axis Progressive Lens Simulator, for generating an Off-Axis progressive lens simulation; and an Axial Power-Distance Simulator, for simulating a progressive lens power in the eye axis direction. The Progressive Lens Simulator can alternatively include an Integrated Progressive Lens Simulator, for creating a Comprehensive Progressive Lens Simulation. The Progressive Lens Simulator can be Head-mounted. A Guided Lens Design Exploration System for the Progressive Lens Simulator can include a Progressive Lens Simulator, a Feedback-Control Interface, and a Progressive Lens Design processor, to generate a modified progressive lens simulation for the patient after a guided modification of the progressive lens design. A Deep Learning Method for an Artificial Intelligence Engine can be used for a Progressive Lens Design Processor.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: February 8, 2022
    Assignee: Neurolens, Inc.
    Inventor: Gergely T. Zimanyi
  • Publication number: 20220007932
    Abstract: Embodiments of the invention include a method to determine a binocular alignment, the method comprising: measuring a disassociated phoria of a first eye and a second eye of a patient at an apparent distance; and determining an accommodative convergence of the first eye and the second eye at the apparent distance using the measured disassociated phoria. In other embodiments, a system to determine a binocular alignment comprises a stereo display, for a projection of images for a first eye and a second eye; an accommodation optics, to modify the projection of the images according to an apparent distance; an eye tracker, to track an orientation of the first eye and the second eye; and a computer, coupled to the stereo display, the accommodation optics and the eye tracker, to manage a determination of the binocular alignment.
    Type: Application
    Filed: September 23, 2019
    Publication date: January 13, 2022
    Applicant: Neurolens, Inc.
    Inventors: Jeffrey P. Krall, Aric Plumley
  • Patent number: 11202563
    Abstract: A Progressive Lens Simulator comprises an Eye Tracker, for tracking an eye axis direction to determine a gaze distance, an Off-Axis Progressive Lens Simulator, for generating an Off-Axis progressive lens simulation; and an Axial Power-Distance Simulator, for simulating a progressive lens power in the eye axis direction. The Progressive Lens Simulator can alternatively include an Integrated Progressive Lens Simulator, for creating a Comprehensive Progressive Lens Simulation. The Progressive Lens Simulator can be Head-mounted. A Guided Lens Design Exploration System for the Progressive Lens Simulator can include a Progressive Lens Simulator, a Feedback-Control Interface, and a Progressive Lens Design processor, to generate a modified progressive lens simulation for the patient after a guided modification of the progressive lens design. A Deep Learning Method for an Artificial Intelligence Engine can be used for a Progressive Lens Design Processor.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 21, 2021
    Assignee: NEUROLENS, INC.
    Inventor: Gergely T. Zimanyi