Abstract: Apparatus for transcutaneous electrical nerve stimulation in a user, the apparatus comprising: stimulation means for electrically stimulating at least one nerve with at least one stimulation pulse; control means connected to the stimulation means for controlling at least one characteristic of the at least one stimulation pulse; and modulating means connected to the control means for modulating the at least one characteristic of the at least one stimulation pulse according to the time of day.
Abstract: Apparatus for providing transcutaneous electrical nerve stimulation (TENS) therapy to a user, said apparatus comprising: a housing; an application unit for providing mechanical coupling between the housing and the user's body; a stimulation unit for electrically stimulating at least one nerve of the user; a sensing unit for (i) sensing the user's body movement and body orientation to determine whether the user is in an “out-of-bed” state or a “rest-in-bed” state, and (ii) analyzing the sleep characteristics of the user during the “rest-in-bed” state; and a feedback unit for at least one of (i) providing the user with feedback in response to the analysis of the sleep characteristics of the user, and (ii) modifying the electrical stimulation provided to the user by the stimulation unit in response to the analysis of the sleep characteristics of the user; wherein the sleep characteristics comprise a likelihood measure of the user's sleep quality.
Type:
Grant
Filed:
July 13, 2017
Date of Patent:
July 2, 2019
Assignee:
Neurometrix, Inc.
Inventors:
Thomas C. Ferree, Shai N. Gozani, Xuan Kong
Abstract: Apparatus for providing transcutaneous electrical nerve stimulation (TENS) therapy to a user, the apparatus comprising: a stimulation unit for electrically stimulating at least one nerve of the user; an electrode array connectable to the stimulation unit, the electrode array comprising a plurality of electrodes for electrical stimulation of the at least one nerve of the user; a monitoring unit electrically connected to the stimulation unit for monitoring the on-skin status of the electrode array; an analysis unit for analyzing the on-skin status of the electrode array to determine the effective on-skin time of the electrode array; and a feedback unit for alerting the user when the analysis unit determine that the effective on-skin time exceeds a threshold.
Abstract: Apparatus for transcutaneous electrical nerve stimulation in a user, the apparatus comprising: a housing; stimulation means for electrically stimulating at least one nerve; an electrode releasably mounted to the housing and connectable to the stimulation means for electrical stimulation of the at least one nerve; monitoring means for monitoring the user's body orientation and movement; analysis means for analyzing said orientation and movement; and control means for controlling the output of the stimulation means in response to said analysis of said orientation and movement.
Abstract: Apparatus for transcutaneous electrical nerve stimulation in a user, the apparatus comprising: stimulation means for electrically stimulating at least one nerve; an electrode array connectable to said stimulation means, said electrode array comprising a plurality of electrodes for electrical stimulation of the at least one nerve, said electrodes having a pre-formed geometry and known electrode-skin contact area size when in complete contact with the user's skin; monitoring means electrically connected to said stimulation means for monitoring the impedance of the electrical stimulation through said electrode array; and analysis means for analyzing said impedance to estimate a change in the electrode-skin contact area.
Type:
Grant
Filed:
October 24, 2016
Date of Patent:
December 25, 2018
Assignee:
NeuroMetrix, Inc.
Inventors:
Shai Gozani, Xuan Kong, Andres Aguirre, Tom Ferree
Abstract: Apparatus for transcutaneous electrical nerve stimulation in a user, the apparatus comprising: a housing; stimulation means carried by the housing for electrically stimulating at least one nerve; a pair of electrodes releasably mounted to the housing and connectable to the stimulation means for electrical stimulation of the at least one nerve; monitoring means for monitoring user gesture, electrode-skin contact integrity and transient motion; analysis means for analyzing the output of the monitoring means for determining user gesture, electrode-skin contact integrity and transient motion; and control means for controlling the output of the stimulation means in response to the determined user gesture, electrode-skin contact integrity and transient motion.
Type:
Grant
Filed:
November 28, 2017
Date of Patent:
November 20, 2018
Assignee:
Neurometrix, Inc.
Inventors:
Thomas Ferree, Xuan Kong, Andres Aguirre, Michael Williams, Shai N. Gozani
Abstract: The present invention is directed to transcutaneous electrical nerve stimulation (TENS) devices which utilize novel stimulation waveforms and novel arrangements of TENS electrodes to improve the efficiency of power consumption while enhancing therapeutic effects.
Type:
Grant
Filed:
November 14, 2016
Date of Patent:
October 30, 2018
Assignee:
Neurometrix, Inc.
Inventors:
Glenn Herb, Andres Aguirre, Xuan Kong, Shai N. Gozani
Abstract: The invention relates to apparatus and methods for stimulating living tissues to determine nerve conduction properties using a pair of stimulator probes and a plurality of detection electrodes. The invention overcomes the problem of reporting potentially inaccurate nerve conduction results by detecting a stimulator probe short or shunt condition during nerve conduction tests. Detection of a short or shunt condition between two stimulator probes is accomplished by monitoring the magnitude of the stimulus artifact waveform acquired from the detection electrodes and the voltage difference between the stimulator probes. A test is flagged when magnitude of the stimulus artifact waveform is below a first threshold and voltage difference between the two stimulator probes is below a second threshold. The first and second threshold values are determined based on the known spatial relationship between the stimulator probes and detection electrodes. Feedback is provided to the tester to alert defective test conditions.
Type:
Grant
Filed:
October 2, 2014
Date of Patent:
June 26, 2018
Assignee:
NeuroMetrix, Inc.
Inventors:
Bonniejean Boettcher, Glenn Herb, Xuan Kong
Abstract: Apparatus for transcutaneous electrical nerve stimulation in a user, the apparatus comprising: a housing; stimulation means carried by the housing for electrically stimulating at least one nerve; a pair of electrodes releasably mounted to the housing and connectable to the stimulation means for electrical stimulation of the at least one nerve; monitoring means for monitoring user gesture, electrode-skin contact integrity and transient motion; analysis means for analyzing the output of the monitoring means for determining user gesture, electrode-skin contact integrity and transient motion; and control means for controlling the output of the stimulation means in response to the determined user gesture, electrode-skin contact integrity and transient motion.
Type:
Grant
Filed:
May 5, 2014
Date of Patent:
November 28, 2017
Assignee:
Neurometrix, Inc.
Inventors:
Thomas Ferree, Xuan Kong, Andres Aguirre, Michael Williams, Shai N. Gozani
Abstract: Apparatus for providing transcutaneous electrical nerve stimulation (TENS) therapy to a user, the apparatus comprising: a housing; an application unit for providing mechanical coupling between the housing and the user's body; a stimulation unit for electrically stimulating at least one nerve of the user; a sensing unit for sensing the user's body movement and body orientation; and a reporting unit for providing the user with feedback based on the user's sensed body movement and body orientation.
Abstract: Apparatus for providing transcutaneous electrical nerve stimulation (TENS) therapy to a user, the apparatus comprising: a stimulation unit for electrically stimulating at least one nerve of the user; an electrode array connectable to the stimulation unit, the electrode array comprising a plurality of electrodes for electrical stimulation of the at least one nerve of the user; a monitoring unit electrically connected to the stimulation unit for monitoring the on-skin status of the electrode array; an analysis unit for analyzing the on-skin status of the electrode array to determine the effective on-skin time of the electrode array; and a feedback unit for alerting the user when the analysis unit determine that the effective on-skin time exceeds a threshold.
Abstract: Apparatus for transcutaneous electrical nerve stimulation in humans, the apparatus comprising: a housing; stimulation means mounted within the housing for electrically stimulating nerves; an electrode array releasably mounted to the housing and connectable to the stimulation means, the electrode array comprising a plurality of electrodes for electrical stimulation of nerves; control means mounted to the housing and electrically connected to the stimulation means for controlling at least one characteristic of the stimulation means; monitoring means mounted to the housing and electrically connected to the stimulation means for monitoring at least one characteristic of the stimulation means; user interface means mounted to the housing and electrically connected to the control means for controlling the stimulation means; display means mounted to the housing and electrically connected to the control means and the monitoring means for displaying the status of the stimulations means; and a strap attached to the hous
Type:
Grant
Filed:
January 30, 2015
Date of Patent:
May 23, 2017
Assignee:
NeuroMetrix, Inc.
Inventors:
Shai N. Gozani, Xuan Kong, Andres Aguirre, Glenn Herb, Marc Cryan, Michael Williams
Abstract: Apparatus for transcutaneous electrical nerve stimulation in a user, the apparatus comprising: stimulation means for electrically stimulating at least one nerve; an electrode array connectable to said stimulation means, said electrode array comprising a plurality of electrodes for electrical stimulation of the at least one nerve, said electrodes having a pre-formed geometry and known electrode-skin contact area size when in complete contact with the user's skin; monitoring means electrically connected to said stimulation means for monitoring the impedance of the electrical stimulation through said electrode array; and analysis means for analyzing said impedance to estimate a change in the electrode-skin contact area.
Type:
Grant
Filed:
March 31, 2014
Date of Patent:
October 25, 2016
Assignee:
NeuroMetrix, Inc.
Inventors:
Shai Gozani, Xuan Kong, Andres Aguirre, Tom Ferree
Abstract: Apparatus for measuring sural nerve conduction velocity and amplitude, the apparatus including a housing; stimulation means for electrically stimulating a human sural nerve; a biosensor comprising a plurality of electrodes for detecting a sural nerve response evoked by the stimulation means; acquisition means electrically connected to the biosensor for electrically acquiring the sural nerve response detected by the biosensor; processing means electrically connected to the acquisition means for digitizing, processing and storing the acquired sural nerve response; calculation means electrically connected to the processing means for calculating the conduction velocity and amplitude of the processed sural nerve response; and display means for displaying the sural nerve conduction velocity and amplitude; wherein the stimulation means and the biosensor are designed to be placed on a patient's anatomy, in the vicinity of a sural nerve.
Type:
Grant
Filed:
September 16, 2011
Date of Patent:
November 3, 2015
Assignee:
NeuroMetrix, Inc.
Inventors:
Bonniejean Boettcher, Marc Cryan, Shai N. Gozani, Glenn Herb, Xuan Kong, Michael Williams, Charles Fendrock
Abstract: A method and apparatus for the assessment of neuromuscular function by estimating motor unit F-wave component time of arrival (TOA), comprising: (i) determining and comparing F-wave component features so as to accurately identify individual F-wave components; (ii) repeatedly searching the individual F-wave components and extracting individual F-wavelets from the F-wave components so as to build a complete F-wave TOA profile; and (iii) computing and reporting TOA results for the assessment of neuromuscular function.
Abstract: A method for localizing a needle to a nerve, the method comprising: using the needle to electrically stimulate the nerve, with a known current intensity, so as to evoke a nerve response; detecting the nerve response; analyzing the detected nerve response so as to identify at least one attribute of the same; and confirming that the needle is in the immediate proximity of the nerve based upon known current intensity and at least one identified attribute of the detected nerve response.
Abstract: A method for the automated removal of a stimulus artifact from an electrophysiological signal waveform, wherein the novel method comprises: providing a model of the stimulus artifact that is physically derived and is based on known properties of the electrophysiological signal waveform acquisition hardware and stimulator; and filtering the stimulus artifact out of the electrophysiological signal waveform using the model.
Type:
Grant
Filed:
October 20, 2006
Date of Patent:
April 21, 2015
Assignee:
NeuroMetrix, Inc.
Inventors:
Brian Tracey, Srivathsan Krishnamachari, Shai N. Gozani