Abstract: Spinal cord modulation for inducing paresthetic and anesthetic effects, and associated systems and methods are disclosed. A representative method in accordance with an embodiment of the disclosure includes creating a therapeutic effect and a sensation in a patient by delivering to the patient first pulses having a first set of first signal delivery parameters and second pulses having a second set of second signal delivery parameters, wherein a first value of at least one first parameter of the first set is different than a second value of a corresponding second parameter of the second set, and wherein the first pulses, the second pulses or both the first and second pulses are delivered to the patient's spinal cord.
Type:
Grant
Filed:
August 7, 2023
Date of Patent:
April 29, 2025
Assignee:
Nevro Corp.
Inventors:
Konstantinos Alataris, Andre B. Walker, Jon Parker
Abstract: Systems for disease treatment using electrical stimulation are disclosed. A representative method for treating a patient includes changing an activity, expression, or both activity and expression of a fast sodium channel, a glial cell, or both a fast sodium channel and a glial cell of the patient by applying to a target neural population of the patient an electrical therapy signal having a frequency in a frequency range of 1.5 kHz to 100 KHz.
Abstract: High frequency stimulation for treating sensory and/or motor deficits in patients with spinal cord injuries and/or peripheral polyneuropathy, and associated systems and methods. A representative method includes addressing the patient's somatosensory dysfunction and/or motor dysfunction, resulting from neuropathy and/or spinal cord injury, by directing an electrical therapy signal to the patient's spinal cord region, the therapy signal having a frequency in a frequency range from 1.5 kHz to 100 KHz.
Type:
Grant
Filed:
May 25, 2021
Date of Patent:
February 18, 2025
Assignee:
Nevro Corp.
Inventors:
Jeyakumar Subbaroyan, Kerry Bradley, Dongchul Lee
Abstract: Variable amplitude signals for neurological therapy, and associated systems and methods are disclosed. A representative method includes activating automatic delivery of an electrical therapy signal to a patient's spinal cord region at a frequency in a frequency range between 1.5 kHz and 100 kHz, via at least one signal delivery contact carried by an implanted signal delivery device. The delivery can include repeatedly and automatically delivering the electrical therapy signal at each of multiple therapy signal amplitudes to the at least one signal delivery contact, without the therapy signal generating paresthesia in the patient. The foregoing process can be used as a screening tool to screen responders from non-responders in the context of a non-paresthesia-generating therapy, and/or can be used during long-term treatment, for example, for chronic pain.
Abstract: A lead anchor comprising a longitudinally extending anchor body and a retainer. The longitudinally extending anchor body having a lumen positioned to receive a spinal cord lead therethrough and having a retainer pocket intersecting the lumen. The retainer is positioned in the retainer pocket. The retainer comprises a first grip member having at least one first aperture, a second grip member having at least one second aperture, and at least one U-shaped resilient portion connecting the first and second grip members.
Abstract: The present technology provides systems and methods for directly suppressing nerve cells by delivering electrical stimulation having relatively long pulse widths and at amplitudes below an activation threshold of the nerve cells. For example, some embodiments include delivering a therapy signal having individual pulses with pulse widths of between about 5 ms and 100 ms. Directly suppressing the nerve cells is expected to reduce the transmission of pain signals.
Abstract: Electrical therapy applied to the brain with increased efficacy and/or decreased undesirable side effects, and associated systems and methods, are disclosed. A representative method includes applying a therapy signal to a patient, via at least one electrode at a subdural or epidural location at the patient's brain, to provide effective therapy that reduces or eliminates the effects of a patient disorder. The therapy signal does not induce any non-therapeutic side effects, and has a frequency in a frequency range of from 1.2 kHz to 500 kHz, an amplitude in an amplitude range from 0.1 to 20 mA, and a pulse width in a pulse width range from 1 microsecond to 400 microseconds.
Abstract: Systems for disease treatment using electrical stimulation are disclosed. A representative method for treating a patient includes changing an activity, expression, or both activity and expression of a fast sodium channel, a glial cell, or both a fast sodium channel and a glial cell of the patient by applying to a target neural population of the patient an electrical therapy signal having a frequency in a frequency range of 1.5 kHz to 100 kHz.
Abstract: Stimulation for treating sensory deficits in patients with spinal cord injuries and/or peripheral polyneuropathy, and associated systems and methods. A representative method includes addressing the patient's somatosensory dysfunction, resulting from neuropathy and/or spinal cord injury, by directing an electrical therapy signal to the patient's spinal cord region, the therapy signal having a frequency in a frequency range from 200 Hz to 100 kHz.
Type:
Grant
Filed:
June 29, 2023
Date of Patent:
May 21, 2024
Assignee:
Nevro Corp.
Inventors:
Dongchul Lee, Kerry Bradley, Kwan Yeop Lee
Abstract: Electrical therapy applied to the brain with increased efficacy and/or decreased undesirable side effects, and associated systems and methods, are disclosed. A representative method includes applying a therapy signal to a patient, via at least one electrode at a subdural or epidural location at the patient's brain, to provide effective therapy that reduces or eliminates the effects of a patient disorder. The therapy signal does not induce any non-therapeutic side effects, and has a frequency in a frequency range of from 1.2 kHz to 500 kHz, an amplitude in an amplitude range from 0.1 to 20 mA, and a pulse width in a pulse width range from 1 microsecond to 400 microseconds.
Abstract: Variable amplitude signals for neurological therapy, and associated systems and methods are disclosed. A representative method includes activating automatic delivery of an electrical therapy signal to a patient's spinal cord region at a frequency in a frequency range between 1.5 kHz and 100 kHz, via at least one signal delivery contact carried by an implanted signal delivery device. The delivery can include repeatedly and automatically delivering the electrical therapy signal at each of multiple therapy signal amplitudes to the at least one signal delivery contact, without the therapy signal generating paresthesia in the patient. The foregoing process can be used as a screening tool to screen responders from non-responders in the context of a non-paresthesia-generating therapy, and/or can be used during long-term treatment, for example, for chronic pain.
Abstract: Devices for controlling spinal cord modulation for inhibiting pain, and associated systems and methods, including controllers for automated parameter selection are disclosed. A particular embodiment includes receiving a first input corresponding to a location of a signal delivery device implanted in a patient, establishing a positional relationship between the signal delivery device and an anatomical feature of the patient, receiving a second input corresponding to a medical indication of the patient, and, based at least in part on the positional relationship and the indication, automatically identifying a signal delivery parameter in accordance with which a pulsed electrical signal is delivered to the patient via the signal delivery device.
Abstract: Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions are disclosed. A method in accordance with a particular embodiment includes selecting a target stimulation frequency that is above a threshold frequency, with the threshold frequency corresponding to a refractory period for neurons of a target sensory neural population. The method can further include producing a patient sensation of paresthesia by directing an electrical signal to multiple sensory neurons of the target sensory neural population at the stimulation frequency, with individual neurons of the sensory neural population completing corresponding individual refractory periods at different times, resulting in an asynchronous sensory neuron response to the electrical signal.
Type:
Grant
Filed:
January 26, 2021
Date of Patent:
January 30, 2024
Assignee:
Nevro Corp.
Inventors:
Andre B. Walker, Zi-Ping Fang, Anthony V. Caparso
Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region from an epidural, cervical location to address at least one of high back pain, mid-back pain, low back pain, and leg pain without creating paresthesia in the patient.
Type:
Grant
Filed:
March 2, 2022
Date of Patent:
January 30, 2024
Assignee:
Nevro Corp.
Inventors:
James R. Thacker, Konstantinos Alataris, Bradford Evan Gliner
Abstract: The present technology provides systems and methods for directly suppressing nerve cells by delivering electrical stimulation having relatively long pulse widths and at amplitudes below an activation threshold of the nerve cells. For example, some embodiments include delivering a therapy signal having individual pulses with pulse widths of between about 5 ms and 100 ms. Directly suppressing the nerve cells is expected to reduce the transmission of pain signals.
Abstract: Improving motor function in spinal cord injury patients (among others) via electrical stimulation, and associated systems and methods are disclosed. A representative method includes, in a patient having a spinal cord injury, improving the patient's gait response by delivering an electrical signal that includes repeating pulse packets delivered at a first frequency of from 2 Hz to 200 Hz. The electrical signal is delivered from an epidural location at the patient's spinal cord, and the individual pulse packets include a first period during which pulses are delivered at a first frequency of from 1 kHz to 5 kHz and a first pulse width of from 80 microseconds to 400 microseconds and a first amplitude from 0.1 mA to 20 mA, followed by a second period during which pulses are (a) not delivered, or (b) delivered at a second frequency higher than the first frequency, and/or a second pulse width shorter than the first pulse width, and/or a second amplitude less than the first amplitude.
Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
Type:
Grant
Filed:
May 19, 2022
Date of Patent:
October 17, 2023
Assignee:
Nevro Corp.
Inventors:
Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
Abstract: Implanted pulse generators with reduced power consumption via signal strength-duration characteristics, and associated systems and methods are disclosed. A representative method for treating a patient in accordance with the disclosed technology includes receiving an input corresponding to an available voltage for an implanted medical device and identifying a signal delivery parameter value of an electrical signal based on a correlation between values of the signal delivery parameter and signal deliver amplitudes. The signal deliver parameter can include at least one of pulse width or duty cycle. The method can further include delivering an electrical therapy signal to the patient at the identified signal delivery parameter value using a voltage within a margin of the available voltage.
Abstract: Paddle leads and delivery tools, and associated systems and methods are disclosed. A representative system is for use with a signal delivery paddle that is elongated along a longitudinal axis, and has a paddle length and a first cross-sectional area distribution that includes a first maxima. The system comprises a delivery tool including a proximal handle and a distal connection portion positioned to removably couple to the signal delivery paddle. The paddle and the delivery tool together have a combined second cross-sectional area distribution along the length of the paddle, with a second maxima that is no greater than the first maxima.
Abstract: Spinal cord modulation for inducing paresthetic and anesthetic effects, and associated systems and methods are disclosed. A representative method in accordance with an embodiment of the disclosure includes creating a therapeutic effect and a sensation in a patient by delivering to the patient first pulses having a first set of first signal delivery parameters and second pulses having a second set of second signal delivery parameters, wherein a first value of at least one first parameter of the first set is different than a second value of a corresponding second parameter of the second set, and wherein the first pulses, the second pulses or both the first and second pulses are delivered to the patient's spinal cord.
Type:
Grant
Filed:
December 15, 2021
Date of Patent:
September 19, 2023
Assignee:
Nevro Corp.
Inventors:
Konstantinos Alataris, Andre B. Walker, Jon Parker