Abstract: The present invention provides an apparatus and methods for continuous intravascular measurement of whole blood concentration, blood pressure, and pulse pressure. The intravascular catheter incorporates a sensor to measure whole blood sound velocity, attenuation, backscatter amplitude, and blood flow velocity and also incorporates existing technologies for multiple physiologic measurements of whole blood. Pulse wave velocity and wave intensity are derived mathematically for purposes of estimating degree of local vascular tone.
Abstract: The present invention provides an apparatus and methods for continuous intravascular measurement of whole blood concentration, blood pressure, and pulse pressure. The intravascular catheter incorporates a sensor to measure whole blood sound velocity, attenuation, backscatter amplitude, and blood flow velocity and also incorporates existing technologies for multiple physiologic measurements of whole blood. Pulse wave velocity and wave intensity are derived mathematically for purposes of estimating degree of local vascular tone.
Abstract: The present invention provides an apparatus and methods for continuous intravascular measurement of whole blood concentration, blood pressure, and pulse pressure. The intravascular catheter incorporates a sensor to measure whole blood sound velocity, attenuation, backscatter amplitude, and blood flow velocity and also incorporates existing technologies for multiple physiologic measurements of whole blood. Pulse wave velocity and wave intensity are derived mathematically for purposes of estimating degree of local vascular tone.