Patents Assigned to Nexans
  • Patent number: 9027606
    Abstract: A pipe for underwater transportation of fluid is indicated which includes a pressure-tight metal inner pipe for conducting the fluid, wherein for its stabilization in radial direction at least one profiled metal strand and for stabilizing in the axial direction at least one tension-proof strand are wound around the inner pipe. The inner pipe (1) is a metal pipe which is corrugated transversely of its longitudinal direction and which for stabilization in the radial direction is surrounded by at least one first radial reinforcement (3) which is composed of a profiled helically extending profile strip whose windings are placed closely next to each other or engage each other and are hooked together. Arranged around the first radial reinforcement (3) is arranged a metal pipe corrugated transversely of its longitudinal direction as the outer pipe (5); at least two layers of tension-proof strands (7, 8) are wound around the outer pipe (5), preferably with oppositely directed pitch.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: May 12, 2015
    Assignee: Nexans
    Inventors: Christian Frohne, Ketil Opstad, Jon-Arne Hall
  • Publication number: 20150122546
    Abstract: The present invention relates to a device comprising at least one electrical cable (10a, 10b, and 10c) for transporting DC current, said electrical cable comprising an elongate electrical conductor (11a, 11b, and 11c) surrounded by at least one first semiconducting layer (12c), an electrically insulating layer (13a, 13b and 13c) surrounding the first semiconducting layer and a second semiconducting layer (14a, 14b and 14c) surrounding the electrically insulating layer, characterized in that the electrical cable (10a, 10b, and 10c) furthermore comprises a space charge trapping layer (15a, 15b, and 15c) obtained on the basis of a polymeric composition comprising at least one organic polymer and at least one linear filler, the space charge trapping layer (15a, 15b, and 15c) replacing at least in part the second semiconducting layer (14a, 14b, and 14c) of the electrical cable, so that the space charge trapping layer is in physical contact with the electrically insulating layer (13a, 13b, and 13c) of the electrica
    Type: Application
    Filed: June 7, 2013
    Publication date: May 7, 2015
    Applicant: NEXANS
    Inventors: Jean-Maxime Saugrain, Pierre Mirebeau
  • Patent number: 9006576
    Abstract: A superconductive cable which has a cryostat with two concentric metal pipes where the cryostat has at least a first axial section with a first axial spring constant, and at least a second axial section which has a second axial spring constant which at most is 20%, more preferred at most 10%, of the axial spring constant of the first section.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 14, 2015
    Assignee: Nexans
    Inventors: Mark Stemmle, Rainer Soika
  • Patent number: 8987596
    Abstract: The present invention relates to an electric cable comprising a conductor element, an electrically insulating layer surrounding said conductor element, said electrically insulating layer being obtained from a mixture comprising polyethylene and a styrene copolymer, wherein the polyethylene is a plurimodal polyethylene.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: March 24, 2015
    Assignee: Nexans
    Inventors: Pierre Mirebeau, Jérôme Matallana, Jean-Francois Brame, Hakim Janah
  • Patent number: 8965698
    Abstract: A system for generating line ratings includes a module for receiving data concerning a power line, a module for stores the data concerning said power line, and a module receives weather data associated with each of the geographic locations along the length of the power line. A processor is configured to select between generating a line rating based on the at least one tension/sag measurement and the weather data associated with each of said geographic locations along the length of said power line, where if the power line has a load exceeding a predetermined threshold, then the processor generates a line rating based on the at least one tension/sag measurement, and where if the power line has a load below the predetermined threshold, then the processor generates a line rating based on the weather data associated with each of the geographic locations along the length of the power line.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 24, 2015
    Assignee: Nexans
    Inventors: Robert Mohr, Sarantos K. Aivaliotis, Zenon Stelmak
  • Patent number: 8958671
    Abstract: A power and/or telecommunication cable (Ia,Ib) includes one or several conductor elements (10,20,30) surrounded by an outer sheath, where the outer sheath (40,50) comprising a first layer (40a, 40b) able to emit light radiation, and a second layer (50) made of a light transmitting thermoplastic polyurethane (TPU) material surrounding the first layer (40a, 40b), so that h first layer (40a, 40b) is visible through the second layer (50).
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: February 17, 2015
    Assignee: Nexans
    Inventors: Jorge Antonio Cofre Luna, Jorge Villablanca, Fernando Munoz
  • Patent number: 8956080
    Abstract: An assembly for splicing and repairing an umbilical is provided having two terminal bend restrictors and two strain terminators, here each terminal bend restrictor has at least two interconnected modules, a connecting end, and a free end. The strain terminators have a strain receiving end and a strain providing end, with each of the strain receiving ends is connected to one of the connecting ends of the terminal bend restrictors. The assembly further has an intermediate bend restrictor having at least two interconnected modules and two connecting ends. The two strain terminators are connected at their strain providing ends to separate connecting ends of the intermediate bend restrictor, and the intermediate bend restrictor is dimensioned to withstand tensile strain from the connected strain terminators.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: February 17, 2015
    Assignee: Nexans
    Inventor: Christer Berg
  • Patent number: 8954126
    Abstract: A superconductive electrical direct current cable with at least two conductors insulated relative to each other is indicated, where the cable is placed with at least two conductors insulated relative to each other, where the conductors are arranged in a cryostat suitable for guidance of the cooling agent, wherein the cryostat is composed of at least one metal pipe which is surrounded by a circumferentially closed layer with thermally insulating properties. In the cryostat is arranged a strand-shaped carrier composed of insulating material, where the carrier has at least two diametrically oppositely located outwardly open grooves in each of which is arranged one of the conductors. Each conductor is composed of a plurality of superconductive elements.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: February 10, 2015
    Assignee: Nexans
    Inventors: Mark Stemmle, Erik Marzahn
  • Patent number: 8952255
    Abstract: A piggyback cable (10) has a copper conductor (2) with a triple extruded insulation system including a conductor screen (13), an insulation layer (14), and an insulation screen (15), an inner sheath (16) surrounding this insulation system, and an outer sheath (18), the space between the inner (16) and outer (18) sheaths being filled with protective elements. The protective elements have thermoplastic (21) elements arranged together to form at least one layer helically wound around the said cable (10).
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: February 10, 2015
    Assignee: Nexans
    Inventors: Per Arne Osborg, Hans Kvarme
  • Patent number: 8946126
    Abstract: A precursor material for the preparation of superconductors based on Bi2Sr2Ca1Cu2O8+? wherein the precursor material which is as close to equilibrium state as possible, i.e., has less than 5% in average 2201 intergrowths in the 2212 phase; in particular, the present invention relates to a precursor material, which is converted to the final conductor by partial melt processing, as well as to a process for the production of the precursor material and the use of the precursor material for preparing superconductors based on Bi2Sr2Ca1Cu2O8+?.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: February 3, 2015
    Assignee: Nexans
    Inventors: Joachim Bock, Jurgen Ehrenberg, Mark Rikel
  • Patent number: 8948831
    Abstract: A transmission system is provided with a superconductive cable having three phase conductors and a cryostat, surrounding the phase conductors, and encasing a hollow space, for conducting a cooling agent. For the three phase conductors, a common neutral conductor is provided, being made of electrically normally conducting material, carried out as insulating round conductor and placed outside the cryostat and next to it. The cryostat is made of a circumferentially enclosed, thermally insulated sheath.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: February 3, 2015
    Assignee: Nexans
    Inventors: Mark Stemmle, Frank Schmidt, Rainer Soika, Beate West
  • Patent number: 8934951
    Abstract: An arrangement with at least one superconductive cable (4) and a first cryostat (K1) surrounding the cable. A second cryostat (K2) is formed around the first cryostat (K1) coaxially with and at a distance from the first cryostat (K1) for conducting a second cooling agent therethrough. The second cryostat (K2) is composed of two pipes (12, 13) which are arranged coaxially and at a distance from each other and, where a thermal insulation (14) is enclosed between the pipes, and where during operation of the arrangement a liquefied gas, having a temperature of 112K or less, is conducted through the cryostat (K2).
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: January 13, 2015
    Assignee: Nexans
    Inventors: Frank Schmidt, Mark Stemmle
  • Patent number: 8923940
    Abstract: A system with a three phase superconductive electrical transmission element is indicated, in which three superconductive electrical phase conductors are arranged insulated relative to each other and concentrically relative to each other, and in which a thermally insulated tubular cryostat is arranged which has a free space for conducting a cooling medium therethrough. The transmission element has at least two identically constructed cables (K1, K2), each of which has three electrical phase conductors (L1, L2, L3) which are insulated relative to each other and arranged concentrically relative to each other. The phase conductors (L1, L2, L3) of the two cables (K1, K2) are electrically switched in parallel in such a way that always one phase conductor of the one cable is connected to the phase conductor of the other cable.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: December 30, 2014
    Assignee: Nexans
    Inventors: Mark Stemmle, Beate West
  • Patent number: 8895858
    Abstract: A cable is provided containing one or more polymeric elements for reduction of crosstalk. The cable includes a plurality of unshielded twisted pairs, each of which is an insulated conductor pair twisted around one another, each having a different lay length. A jacket encloses the plurality of unshielded twisted pairs, where an unshielded twisted pair, has the longest lay length among the plurality of unshielded twisted pairs is positioned within the center of the jacket such that an axis of the twisted pairs that has the longest lay length substantially coincides with the central longitudinal axis of the cable. A plurality of bumper elements are disposed within the jacket in the interstices between said plurality of unshielded twisted pairs, where the bumper elements are profiled polymer structures.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 25, 2014
    Assignee: NEXANS
    Inventors: Greg Heffner, Joshua Keller, Qibo Jiang, Paul Kroushl, Fredric Jean, Kathy Perevosnik
  • Patent number: 8897845
    Abstract: An arrangement for electrically conductively connecting two electrical units by means of a bipolar high voltage direct current transmission, in which between the units are arranged at least two electrical direct current cables constructed as superconductive cables. The superconductive cables are mounted separately from each other in a cryostat (1,2) suitable for conducting a cooling agent which has at least one metal pipe provided with a thermal insulation. The cryostats (1,2) are connected with at least one of their ends to a cooling plant (7) supplying the cooling agent and a pipeline (3) is placed parallel to the two cryostats (1,2). The pipeline (3) is connected at both its ends to the two cryostats (1,2) through valves (15,16,17) which are closed during uninterrupted operation and, in the case of an interruption at one of the superconductive cables, the pipeline (3) serves with the then open valves for conducting the cooling agent intended for the cryostat of the impaired cable.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: November 25, 2014
    Assignee: NEXANS
    Inventors: Mark Stemmle, Erik Marzahn
  • Patent number: 8890550
    Abstract: An electrical device for detecting moisture has a detection cable (10a, 10b, 10c) made up of a first element (1) and of a second element (2a, 2b, 2c) which elements are elongate and electrically conducting and separated by a polymer-based material (3), and an electrical resistance measurement appliance intended to measure the electrical resistance between the first and second elements of the the cable, where the material (3) is a non-soluble and moisture-sensitive material.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 18, 2014
    Assignee: Nexans
    Inventors: Laurent Tribut, Yann Breton, Ivar Granheim
  • Patent number: 8882022
    Abstract: A cable carrying assembly includes a spool made from a first flange region, drum portion and a second flange region where each of the first flange region, drum portion and a second flange region are integrally molded as a single polymer unit. The drum portion is molded as a hollow drum for supporting a cable. The first flange region includes at least two openings and a handle receiving region and the handle has a grip portion, two stems each with a latch knob. The stems and knobs of the handle are inserted into the at least two openings on the first flange region of the drum and lock into place via the knobs, such that the grip portion of the handle is arrangeable in a first open position with the grip portion substantially perpendicular to the first flange regions and a second closed position with the grip portion folded down about the articulated joints, into the handle receiving region of the first flange region.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: November 11, 2014
    Assignee: Nexans
    Inventor: Sidney Wierstra
  • Patent number: 8884163
    Abstract: A wire having a conductor and an insulation where the insulation has a first inner layer of an uncured material and a second outer layer of a cured material.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Nexans
    Inventors: Wayne Y. Chu, Jun Hong Yi
  • Patent number: 8879877
    Abstract: A fiber optic cable is provided having a at least one fiber element, a layer of aramid strength members, and a jacket disposed over said layer of aramid strength members. The layer of aramid strength members is wound at a lay length that is equal to or lesser than a predetermined bend radius.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: November 4, 2014
    Assignee: Nexans
    Inventors: David Keller, Christopher Raynor, Terry Gooch, Randie Yoder, Dan Rouse
  • Patent number: D728236
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: May 5, 2015
    Assignee: Nexans
    Inventors: Steeve Virassamy, Xavier Ynna