Patents Assigned to NEXCIS
  • Patent number: 9647151
    Abstract: The invention relates to manufacturing a I-III-VI compound in the form of a thin film for use in photovoltaics, including the steps of: a) electrodepositing a thin-film structure, consisting of I and/or III elements, onto the surface of an electrode that forms a substrate (SUB); and b) incorporating at least one VI element into the structure so as to obtain the I-III-VI compound. According to the invention, the electrodeposition step comprises checking that the uniformity of the thickness of the thin film varies by no more than 3% over the entire surface of the substrate receiving the deposition.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: May 9, 2017
    Assignee: NEXCIS
    Inventors: Pierre-Philippe Grand, Salvador Jaime, Philippe De Gasquet, Hariklia Deligianni, Lubomyr T. Romankiw, Raman Vaidyanathan, Qiang Huang, Shafaat Ahmed
  • Patent number: 9478695
    Abstract: The invention relates to a method of manufacturing a I-III-VI2 layer with photovoltaic properties, comprising: deposition of a metal on a substrate to form a contact layer, deposition of a precursor of the photovoltaic layer, on the contact layer, and heat treatment of the precursor with an addition of element VI to form the I-III-VI2 layer. The element VI usually diffuses into the contact layer (MO) during the heat treatment and combines with the metal to form a superficial layer (SUP) on the contact layer. In the method of the invention, the metal deposition comprises a step during which an additional element is added to the metal to form a compound (MO-EA), in the contact layer, acting as a barrier to the diffusion of the element VI, which allows precisely controlling the properties of the superficial layer, particularly its thickness.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: October 25, 2016
    Assignee: NEXCIS
    Inventors: Stephanie Angle, Ludovic Parissi
  • Patent number: 9377300
    Abstract: A photoreflectance device for characterizing a rough surface includes a pump beam emitter to emit a pump beam; a probe beam emitter to emit a probe beam; a detector to detect the probe beam reflected by the surface; an integrating sphere to collect the probe beam reflected by the surface, the integrating sphere including: a first output connected to the detector, and disposed so as to receive a majority of the probe beam reflected by the surface; a second output arranged so as to receive a majority of the pump beam reflected by the surface.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: June 28, 2016
    Assignees: NEXCIS, UNIVERSITE D'AIX-MARSEILLE
    Inventors: Antonin Moreau, Véronica Bermudez, Ludovic Escoubas, Jean-Jacques Simon
  • Publication number: 20160079454
    Abstract: A process for forming a semiconductor layer, especially with a view to photovoltaic applications, and more particularly to a process for forming a semiconductor layer of I-III-VI2 type by heat treatment and chalcogenization of a metallic precursor of I-III type, the process comprising: a heating step under an inert atmosphere during which the temperature increases uniformly up to a first temperature of between 460° C. and 540° C., in order to enable the densification of the metallic precursor, and a chalcogenization step beginning at said first temperature and during which the temperature continues to increase up to a second temperature, a stabilization temperature, of between 550° C. and 600° C., in order to enable the formation of the semiconductor layer. The formation of a semiconductor layer, or equivalently of an absorber, having a gain in conversion efficiency of around 4%, is thus advantageously achieved.
    Type: Application
    Filed: April 30, 2014
    Publication date: March 17, 2016
    Applicant: NEXCIS
    Inventors: Cedric Broussillou, Sylvie Bodnar
  • Patent number: 9112099
    Abstract: A treatment of thin layers for forming a connection of a photovoltaic cell including the thin layers, which includes a first layer, having photovoltaic properties, deposited on a second layer, and the second layer, which is a metal contact layer, deposited on a substrate, the treatment including etching, in the first layer, at least one first trench having a first width so as to expose the second layer; and etching, in the first trench, a second trench so as to expose the substrate, the second trench having a second width less than the first width.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: August 18, 2015
    Assignee: NEXCIS
    Inventor: Brendan Dunne
  • Patent number: 8883547
    Abstract: The invention relates to the production of a thin film having photovoltaic properties, containing a I-III-VI2-type alloy and deposited by electrolysis, including the following steps: (a) successive deposits of layers of metallic elements I and III; and (b) thermal post-treatment with the addition of element VI. In particular, step (a) comprises the following operations: (a1) depositing a multi-layer structure comprising at least two layers of element I and two layers of element III, deposited in an alternate manner, and (a2) annealing said structure before adding element VI in order to obtain a I-III alloy.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 11, 2014
    Assignee: NEXCIS
    Inventors: Pierre-Philippe Grand, Salvador Jaime, Cedric Broussillou
  • Publication number: 20140315346
    Abstract: The invention relates to a method of manufacturing a I-III-VI2 layer with photovoltaic properties, comprising: deposition of a metal on a substrate to form a contact layer, deposition of a precursor of the photovoltaic layer, on the contact layer, and heat treatment of the precursor with an addition of element VI to form the layer. The element VI usually diffuses into the contact layer (MO) during the heat treatment and combines with the metal to form a superficial layer (SUP) on the contact layer. In the method of the invention, the metal deposition comprises a step during which an additional element is added to the metal to form a compound (MO-EA), in the contact layer, acting as a barrier to the diffusion of the element VI, which allows precisely controlling the properties of the superficial layer, particularly its thickness.
    Type: Application
    Filed: November 22, 2012
    Publication date: October 23, 2014
    Applicant: NEXCIS
    Inventors: Stephanie Angle, Ludovic Parissi
  • Publication number: 20130269780
    Abstract: The present invention relates to a method for fabricating a thin layer made of a alloy and having photovoltaic properties. The method according to the invention comprises first steps of: a) depositing an adaptation layer (MO) on a substrate (SUB), b) depositing at least one layer (SEED) comprising at least elements I and/or III, on said adaptation layer. The adaptation layer is deposited under near vacuum conditions and step b) comprises a first operation of depositing a first layer of I and/or III elements, under same conditions as the deposition of the adaptation layer, without exposing to air the adaptation layer.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 17, 2013
    Applicant: NEXCIS
    Inventors: Pierre-Philippe Grand, Jesus Salvadoe Jaime Ferrer, Emmanuel Roche, Hariklia Deligianni, Raman Vaidyanathan, Kathleen B. Reuter, Qiang Huang, Lubomyr Romankiw, Maurice Mason, Donna S. Zupanski-Nielsen
  • Publication number: 20130023068
    Abstract: The present invention relates to the manufacture of a photovoltaic cell panel, said manufacture comprising the steps of: a) obtaining photovoltaic (PV) films that are each intended for a cell and are placed onto a front surface of a metal substrate; b) applying at least one conductive film (CG, CND) onto each front surface of a photovoltaic film; c) cutting up the substrate (SUB) so as to isolate the cells from each other; and d) encapsulating (ENC) the cells on a common mounting. According to the invention, steps d) and c) are reversed, so step d) relates to encapsulating the front surface of the substrate before step c), cutting the substrate up by the rear surface thereof.
    Type: Application
    Filed: March 24, 2011
    Publication date: January 24, 2013
    Applicant: NEXCIS
    Inventor: Brendan Dunne
  • Publication number: 20120264255
    Abstract: The invention relates to the production of a thin film having photovoltaic properties, containing a I-III-VI2-type alloy and deposited by electrolysis, including the following steps: (a) successive deposits of layers of metallic elements I and III; and (b) thermal post-treatment with the addition of element VI. In particular, step (a) comprises the following operations: (a1) depositing a multi-layer structure comprising at least two layers of element I and two layers of element III, deposited in an alternate manner, and (a2) annealing said structure before adding element VI in order to obtain a I-III alloy.
    Type: Application
    Filed: October 6, 2010
    Publication date: October 18, 2012
    Applicant: NEXCIS
    Inventors: Pierre-Philippe Grand, Salvador Jaime, Cedric Broussillou