Patents Assigned to NEXEON LIMITED
  • Patent number: 11923544
    Abstract: An electrochemically active material comprising a surface is provided, wherein the surface comprises an oligomer. A method of functionalising the surface with the oligomer is also provided.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: March 5, 2024
    Assignee: Nexeon Limited
    Inventors: Jonathon David Speed, Scott Brown, Simon Foxon
  • Patent number: 11905593
    Abstract: The disclosure relates to a process for preparing particulate materials having high electrochemical capacities that are suitable for use as anode active materials in rechargeable metal-ion batteries. In one aspect, the disclosure provides a process for preparing a particulate material comprising a plurality of composite particles. The process includes providing particulate porous carbon frameworks comprising micro pores and/or mesopores, wherein the porous carbon frameworks have a D50 particle diameter of at least 20 ?m; depositing an electroactive material selected from silicon and alloys thereof into the micropores and/or mesopores of the porous carbon frameworks using a chemical vapour infiltration process in a fluidised bed reactor, to provide intermediate particles; and comminuting the intermediate particles to provide said composite particles.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 20, 2024
    Assignee: Nexeon Limited
    Inventors: Sefa Yilmaz, Charles A. Mason, Richard Gregory Taylor, David Bent
  • Publication number: 20230395774
    Abstract: Silicon-containing composite particles, the process comprising the steps of: (a) providing a plurality of porous particles comprising micropores and/or mesopores, wherein the D50 particle diameter of the porous particles from 0.5 to 200 ?m; the total pore volume of micropores and mesopores is from 0.4 to 2.2 cm3/g; and the PD50 pore diameter is no more than 30 nm; c (b) combining a charge of the porous particles with a charge of a silicon-containing precursor in a batch pressure reactor, wherein the charge of porous particles has a volume of at least 20 cm3 per litre of reactor volume (cm3/LRV), and wherein the charge of the silicon-containing precursor comprises at least 2 g of silicon per litre of reactor volume (g/LRV); and (c) heating the reactor to a temperature effective to cause deposition of silicon in the pores of the porous particles, thereby providing the silicon-containing composite particles.
    Type: Application
    Filed: October 22, 2021
    Publication date: December 7, 2023
    Applicants: WACKER CHEMIE AG, NEXEON LIMITED
    Inventors: Jan TILLMANN, Christoph DRÄGER, Alena KALYAKINA, Sebastian KNEISSL, Thomas RENNER, Markus ANDERSON, Charles A. MASON, José MEDRANO-CATALAN, Richard Gregory TAYLOR, Joshua WHITTAM
  • Patent number: 11715824
    Abstract: The invention relates to a particulate material comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework comprising micropores and mesopores having a total pore volume of at least 0.6 cm3/g and no more than 2 cm3/g, where the volume fraction of micropores is in the range from 0.5 to 0.9 and the volume fraction of pores having a pore diameter no more than 10 nm is at least 0.75, and the porous carbon framework has a D50 particle size of less than 20 ?m; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: August 1, 2023
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, Christopher Michael Friend
  • Patent number: 11710819
    Abstract: This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise a plurality of silicon nanoparticles dispersed within a conductive carbon matrix. The particulate material comprises 40 to 65 wt % silicon, at least 6 wt % and less than 20% oxygen, and has a weight ratio of the total amount of oxygen and nitrogen to silicon in the range of from 0.1 to 0.45 and a weight ratio of carbon to silicon in the range of from 0.1 to 1. The particulate electroactive materials are useful as an active component of an anode in a metal ion battery.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: July 25, 2023
    Assignee: Nexeon Limited
    Inventors: Timothy Bogart, Simon Foxon, James Farrell, David Bent, Daniel Scarlett
  • Patent number: 11695110
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a total volume of at least 0.7 cm3/g and up to 2 cm3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: July 4, 2023
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 11688849
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a combined total volume of at least 0.7 cm3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D90 particle diameter of the composite particles is no more than 10 nm.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: June 27, 2023
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 11342558
    Abstract: An electrochemically active material comprising a surface is provided, wherein the surface comprises an oligomer. A method of functionalising the surface with the oligomer is also provided.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: May 24, 2022
    Assignee: Nexeon Limited
    Inventors: Jonathon David Speed, Scott Brown, Simon Foxon
  • Patent number: 11165054
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a combined total volume of at least 0.7 cm3/g, wherein at least half of the micropore/mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) an electroactive material located within the micropores and/or mesopores of the porous carbon framework. The D90 particle diameter of the composite particles is no more than 10 nm.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: November 2, 2021
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 11127945
    Abstract: An electrode for a metal-ion battery is provided wherein the active layer of the electrode comprises a plurality of low porosity particles comprising an electroactive material selected from silicon, silicon oxide germanium, tin, aluminium and mixtures thereof and a plurality of carbon particles selected from one or more of graphite, soft carbon and hard carbon. The ratio of the D50 particles size of the carbon particles to the D50 particle diameter of the porous particles is in the range of from 1.5 to 30. Also provided are rechargeable metal-ion batteries comprising said electrode and compositions of porous particles and carbon particles which may be used to prepare the active layer of said electrode.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: September 21, 2021
    Assignee: Nexeon Limited
    Inventors: Tsuyonobu Hatazawa, Christopher Michael Friend
  • Patent number: 11011748
    Abstract: This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a total volume of at least 0.7 cm3/g and up to 2 cm3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: May 18, 2021
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, James Farrell, William Macklin
  • Patent number: 10964940
    Abstract: This invention relates to particulate electroactive materials consisting of a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and mesopores having a total volume of 0.5 to 1.5 cm3/g; and (b) silicon located at least within the micropores of the porous carbon framework in a defined amount relative to the volume of the micropores and mesopores. At least 20 wt % of the silicon is characterized as surface silicon by thermogravimetric analysis.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: March 30, 2021
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, Christopher Michael Friend
  • Patent number: 10938027
    Abstract: The invention relates to a particulate material comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework comprising micropores and mesopores having a total pore volume of at least 0.6 cm3/g and no more than 2 cm3/g, where the volume fraction of micropores is in the range from 0.5 to 0.9 and the volume fraction of pores having a pore diameter no more than 10 nm is at least 0.75, and the porous carbon framework has a D50 particle size of less than 20 ?m; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: March 2, 2021
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, Christopher Michael Friend
  • Patent number: 10847790
    Abstract: An electrochemically active material comprising a surface is provided, wherein at least part of the surface is functionalised with a grafted heteroatom-functionalised oligomer. A method of functionalising the surface with the oligomer is also provided.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: November 24, 2020
    Assignee: Nexeon Limited
    Inventors: Jonathon David Speed, Scott Brown, Simon Foxon, Tsuyonobu Hatazawa
  • Patent number: 10822713
    Abstract: A powder comprising pillared particles for use as an active component of a metal ion battery, the pillared particles comprising a particle core and a plurality of pillars extending from the particle core, wherein the pillared particles are formed from a starting material powder wherein at least 10% of the total volume of the starting material powder is made up of starting material particles having a particle size of no more than 10 microns.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: November 3, 2020
    Assignee: Nexeon Limited
    Inventors: Chris Friend, William James Macklin, Yuxiong Jiang, Mamdouh Elsayed Abdelsalam, Fengming Liu, Phil Rayner
  • Patent number: 10658659
    Abstract: The invention relates to a particulate material comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework comprising micropores and mesopores having a total pore volume of at least 0.6 cm3/g and no more than 2 cm3/g, where the volume fraction of micropores is in the range from 0.5 to 0.9 and the volume fraction of pores having a pore diameter no more than 10 nm is at least 0.75, and the porous carbon framework has a D50 particle size of less than 20 ?m; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: May 19, 2020
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, Christopher Michael Friend
  • Patent number: 10508335
    Abstract: The disclosure relates to a process for preparing particulate materials having high electrochemical capacities that are suitable for use as anode active materials in rechargeable metal-ion batteries. In one aspect, the disclosure provides a process for preparing a particulate material comprising a plurality of composite particles. The process includes providing particulate porous carbon frameworks comprising micropores and/or mesopores, wherein the porous carbon frameworks have a D50 particle diameter of at least 50 ?m; depositing an electroactive material selected from silicon and alloys thereof into the micropores and/or mesopores of the porous carbon frameworks using a chemical vapor infiltration process in a fluidized bed reactor, to provide intermediate particles; and comminuting the intermediate particles to provide said composite particles.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: December 17, 2019
    Assignee: Nexeon Limited
    Inventors: Sefa Yilmaz, Charles Mason, Richard Taylor, David Bent
  • Patent number: 10476072
    Abstract: An electrode for a metal-ion battery is provided wherein the active layer of the electrode comprises a plurality of porous particles comprising an electroactive material selected from silicon, germanium, tin, aluminium and mixtures thereof and a plurality of carbon particles selected from one or more of graphite, soft carbon and hard carbon. The ratio of the D50 particles size of the carbon particles to the D50 particle diameter of the porous particles is in the range of from 1.5 to 30. Also provided are rechargeable metal-ion batteries comprising said electrode and compositions of porous particles and carbon particles which may be used to prepare the active layer of said electrode.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: November 12, 2019
    Assignee: Nexeon Limited
    Inventors: Christopher Friend, Tsuyonobu Hatazawa
  • Patent number: 10424786
    Abstract: The invention relates to a particulate material comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework comprising micropores and mesopores having a total pore volume of at least 0.6 cm3/g and no more than 2 cm3/g, where the volume fraction of micropores is in the range from 0.5 to 0.9 and the volume fraction of pores having a pore diameter no more than 10 nm is at least 0.75, and the porous carbon framework has a D50 particle size of less than 20 ?m; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: September 24, 2019
    Assignee: Nexeon Limited
    Inventors: Charles Mason, Richard Taylor, Christopher Michael Friend
  • Patent number: 10388948
    Abstract: A composition comprising a first particulate electroactive material, a particulate graphite material and a binder, wherein at least 50% of the total volume of each said particulate materials is made up of particles having a particle size D50 and wherein a ratio of electroactive material D50 particle size:graphite D50 particle size is up to 4.5:1.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: August 20, 2019
    Assignee: Nexeon Limited
    Inventors: Mamdouh Elsayed Abdelsalam, Fazil Coowar