Patents Assigned to Nexpower Technology Corp.
  • Patent number: 9257592
    Abstract: The present invention provides a translucent solar cell and a manufacturing method thereof. The translucent solar cell comprises, in stacking order, a substrate, a first electrode layer, a photoconductive layer and a second electrode layer. The translucent solar cell is characterized in that there are formed a plurality of first light-transmissive apertures on the second electrode layer and the plurality of first light-transmissive apertures are further extended in a depth direction to the photoconductive layer to form a plurality of second light-transmissive apertures corresponding to the first light-transmissive apertures. A projected area of each of the second light-transmissive apertures is equal to or smaller than that of a corresponding first light-transmissive aperture.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: February 9, 2016
    Assignee: Nexpower Technology Corp.
    Inventors: Chun-Hsiung Lu, Chien-Chung Bi
  • Patent number: 8748728
    Abstract: Disclosed are a thin film solar cell module and a manufacturing method thereof. The thin film solar cell comprises, from bottom to top, a first substrate, a first electrode, an absorber layer, and a second electrode layer. A current output region with a current output element disposed therein is formed at the thin film solar cell module. The absorber layer in the current output region is removed through a mask, thereby making the first electrode layer contacts directly there with the second electrode layer. The current output region can be formed at the positive electrode, the negative electrode, or both positive electrode and negative electrode simultaneously, of the thin film solar cell module, thereby increasing the contact area between the first electrode layer and the second electrode layer at the positive electrode and the negative electrode. The useless current, the resistance and the heat generated there are reduced.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: June 10, 2014
    Assignee: Nexpower Technology Corp.
    Inventors: Chien-Chung Bi, Chia-Yu Chen
  • Patent number: 8729383
    Abstract: Disclosed are a stacked-layered thin film solar cell and a manufacturing method thereof. The stacked-layered thin film solar cell includes plural unit cells connected together electrically, each including a substrate, a first electrode layer, a first photoconductive layer, an interlayer, a second photoconductive layer and a second electrode layer, wherein the first electrode layer is divided by plural first grooves; plural second grooves are formed through the second photoconductive layer, the interlayer, and the first photoconductive layer; and plural third grooves are formed in the second electrode layer and extended downward through the first photoconductive layer. The first, second and third grooves are offset with respect to one another.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: May 20, 2014
    Assignee: Nexpower Technology Corp.
    Inventors: Chun-Hsiung Lu, Chien-Chung Bi
  • Patent number: 8569611
    Abstract: The present invention discloses a backsheet of a solar cell. The backsheet of a solar cell comprises, sequentially from bottom to top, a bottom plastic layer, at least a first insulating layer, a conductive water-proof layer, at least a second insulating layer formed on the conductive water-proof layer, and a weather-resistant layer formed on the second insulating layer. The voltage-resistant ability of the weather-resistant layer is usually about one-third of that of the ordinary insulating layer and the weather-resistant layer is usually has the problem of pinhole which usually results in the defect of arc fail. Therefore, the second insulating layer, in the present invention, deposited between the conductive water-proof layer and the weather-resistant layer, can increase the voltage-resistant ability of the weather-resistant layer and to prevent the pinhole and the arc fail problem.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: October 29, 2013
    Assignee: Nexpower Technology Corp.
    Inventor: Kai Wu
  • Patent number: 8497150
    Abstract: This invention discloses a defect isolation method for thin-film solar cell having at least a defect therein. The thin-film solar cell comprises a substrate, a front electrode layer, an absorber layer and a back electrode layer stacked in such a sequence. The defect isolation method includes the steps of: detecting at least a defect formed in thin-film solar cell and acquiring the positions of the defects, and applying a laser light to scribe the outer circumference of the defects according to the positions of the defects so as to form at least an isolation groove having a closed-curve configuration.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: July 30, 2013
    Assignee: Nexpower Technology Corp.
    Inventors: Yung-Yuan Chang, Hui-Chu Lin
  • Patent number: 8445310
    Abstract: The present invention provides a stacked-layered thin film solar cell and manufacturing method thereof The manufacturing method includes the steps of: providing a substrate, a first electrode layer and a first light-absorbing layer; providing a mask with a plurality of patterns above the first light-absorbing layer; forming an interlayer made of an opaque, highly reflective material by providing the mask on the first light-absorbing layer, wherein the interlayer has a plurality of light transmissive regions corresponding to the patterns, and the light transmissive regions are provided to divide the interlayer into a plurality of units; and then depositing a second light-absorbing layer on the units and a second electrode layer on the second light-absorbing layer.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 21, 2013
    Assignee: Nexpower Technology Corp.
    Inventors: Chien-Chung Bi, Chun-Hsiung Lu
  • Patent number: 8227291
    Abstract: A method of manufacturing a stacked-layered thin film solar cell with a light-absorbing layer having a band gradient is provided. The stacked-layered thin film solar cell includes a substrate, a back electrode layer, a light-absorbing layer, a buffer layer, a window layer, and a top electrode layer stacked up sequentially. The light-absorbing layer has a band gradient structure and is essentially a group I-III-VI compound, wherein the group III elements at least include indium (In) and aluminum (Al). Moreover, the Al/In ratio in the upper half portion of the light-absorbing layer is greater than that in the lower half portion of the light-absorbing layer, wherein the upper half portion is proximate to a light incident surface.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 24, 2012
    Assignee: Nexpower Technology Corp.
    Inventor: Feng-Chien Hsieh
  • Patent number: 8110427
    Abstract: A stacked-layered thin film solar cell and a manufacturing method thereof are provided. The stacked-layered thin film solar cell includes a front electrode layer, a stacked-layered light-absorbing structure, and a back electrode layer. The stacked-layered light-absorbing structure has a p-i-n-type layered structure and consists essentially of I-III-VI compounds, wherein the group III elements at least include indium (In) and aluminum (Al). The p-type layer of the stacked-layered light-absorbing structure is near the front electrode layer while the n-type layer is near the back electrode layer. The Al/In concentration ratio in the p-type layer is higher than that in the n-type layer.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: February 7, 2012
    Assignee: Nexpower Technology Corp.
    Inventor: Feng-Chien Hsieh
  • Publication number: 20110180136
    Abstract: A thin film solar cell structure comprises a substrate, a front electrode layer, an absorber layer, and a back electrode layer stacked on one another sequentially. A first isolation groove goes through the back electrode layer and the absorber layer, and a second isolation groove is disposed concavely in the front electrode layer and filled with an insulative material. A conductive groove is disposed concavely in the absorber layer and filled with a conductive material. Therefore, the front electrode layer is electrically conducted to the back electrode layer via the conductive material. By means of a method of patterning the first isolation groove, second isolation groove and conductive groove, a succinct design of the thin film solar cell structure can be achieved.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 28, 2011
    Applicant: NEXPOWER TECHNOLOGY CORP
    Inventor: CHIH-HUNG HSIAO
  • Patent number: 7951725
    Abstract: A translucent solar cell and a manufacturing method thereof are provided. The translucent solar cell at least includes a substrate, a front electrode layer, a photoconductive layer, and a back electrode layer stacked in order. Therein, a plurality of apertures are formed on the front electrode layer. In addition, a plurality of light-transmissive regions are formed on the back electrode layer and further extended in a depth direction so as to reach the plurality of apertures on the front electrode layer. Thus, the projected area of each light-transmissive region is within and smaller than that of the corresponding aperture.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 31, 2011
    Assignee: Nexpower Technology Corp.
    Inventors: Chun-Hsiung Lu, Chien-Chung Bi
  • Patent number: 7919710
    Abstract: A solar cell includes a first electrode, a second electrode and a stacked semiconductor layer. The stacked semiconductor layer is disposed between the first electrode and the second electrode. The stacked semiconductor layer includes a first semiconductor layer, a second semiconductor layer and an intrinsic semiconductor layer. The first semiconductor layer has a first energy gap. The second semiconductor layer has a second energy gap. The intrinsic semiconductor layer is disposed between the first semiconductor layer and the second semiconductor layer, wherein the intrinsic semiconductor layer is a chalcopyrite layer and has a third energy gap. The third energy gap is less than the first energy gap and the second energy gap.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 5, 2011
    Assignee: Nexpower Technology Corp.
    Inventors: Wei-Lun Lu, Feng-Chien Hsieh, Bae-Heng Tseng
  • Publication number: 20110005585
    Abstract: The present invention discloses a laser-scribing method to make a bifacial thin film solar cell and the structure thereof. The laser-scribing method is to form scribing patterns that penetrate different structural layers during the process of forming various structural layers. After the laser-scribing, the top solar cell unit is attached with the bottom solar cell unit by various combining steps to form a solar cell assembly. The solar cell assembly can receive light from both sides via the absorber layers of both of the top solar cell unit and the bottom solar cell unit. The solar cell assembly has an increased output efficiency and a greater power density and the cost of the manufacturing is therefore reduced.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: NEXPOWER TECHNOLOGY CORP.
    Inventors: Feng-Chien Hsieh, Gwo-Sen Lin, Chien-Pang Yang, Bing-Yi Hou
  • Publication number: 20090272432
    Abstract: A solar cell includes a first electrode, a second electrode and a stacked semiconductor layer. The stacked semiconductor layer is disposed between the first electrode and the second electrode. The stacked semiconductor layer includes a first semiconductor layer, a second semiconductor layer and an intrinsic semiconductor layer. The first semiconductor layer has a first energy gap. The second semiconductor layer has a second energy gap. The intrinsic semiconductor layer is disposed between the first semiconductor layer and the second semiconductor layer, wherein the intrinsic semiconductor layer is a chalcopyrite layer and has a third energy gap. The third energy gap is less than the first energy gap and the second energy gap.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Applicant: NEXPOWER TECHNOLOGY CORP.
    Inventors: Wei-Lun Lu, Feng-Chien Hsieh, Bae-Heng Tseng