Patents Assigned to NexTech Materials, Ltd.
  • Patent number: 11761923
    Abstract: An amperometric electrochemical sensor for measuring the concentrations of one or more target gas species in a gas sample or gas stream, the sensor having at least one electrochemical cell with first and second surface electrodes, an electrolyte layer and a passive signal amplifying layer (“SAL”) comprising electrically conductive material like platinum, wherein at least a portion of the electrolyte layer is located between the surface electrodes and the SAL such that the SAL is in direct, conductive contact with the electrolyte layer but is not in direct contact with the surface electrodes. Sensor systems and detection methods are also provided.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 19, 2023
    Assignee: NEXTECH MATERIALS, LTD.
    Inventors: Gene B. Arkenberg, Scott L. Swartz, Matthew M. Seabaugh
  • Patent number: 9673469
    Abstract: Electrode materials systems for planar solid oxide fuel cells with high electrochemical performance including anode materials that provide exceptional long-term durability when used in reducing gases and cathode materials that provide exceptional long-term durability when used in oxygen-containing gases. The anode materials may comprise a cermet in which the metal component is a cobalt-nickel alloy. These anode materials provide exceptional long-term durability when used in reducing gases, e.g., in SOFCs with sulfur contaminated fuels. The cermet also may comprise a mixed-conducting ceria-based electrolyte material. The anode may have a bi-layer structure. A cerium oxide-based interfacial layer with mixed electronic and ionic conduction may be provided at the electrolyte/anode interface.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: June 6, 2017
    Assignee: NEXTECH MATERIALS, LTD.
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter, Jared R. Archer
  • Patent number: 9304102
    Abstract: An amperometric electrochemical sensor configured to be operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gas species and a resulting measurable increase in oxygen ion flux through the cell. The sensor has an electrolyte membrane, a sensing electrode on the electrolyte membrane, and a counter electrode on the electrolyte membrane, wherein the sensing electrode includes at least one molybdate or tungstate compound. An electrochemical sensor system is also provided, along with a method of detecting the concentration of one or more of NOx and NH3 in a gas sample or stream.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 5, 2016
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, Scott L. Swartz, Lora B. Thrun, Buddy E. McCormick
  • Patent number: 9011778
    Abstract: A hydrogen sensitive composite sensing material based on cerium oxide with or without additives to enhance sensitivity to hydrogen, reduce cross-sensitivities to interfering gases, or lower the operating temperature of the sensor, and a device incorporating these hydrogen sensitive composite materials including a support, electrodes applied to the support, and a coating of hydrogen sensitive composite material applied over the electroded surface. The sensor may have in integral heater. The sensor may have a tubular geometry with the heater being inserted within the tube. A gas sensor device may include a support, electrodes applied to the support, and a dual sensor element to cancel unwanted effects on baseline resistance such as those resulting from atmospheric temperature changes. The hydrogen sensitive composite material or other gas sensitive materials may be used in the dual element gas sensor device.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 21, 2015
    Assignee: NexTech Materials, Ltd.
    Inventors: Christopher T. Holt, Stephen R. Cummings, Scott L. Swartz, Lora B. Thrun
  • Patent number: 8974657
    Abstract: Amperometric ceramic electrochemical cells comprise, in one embodiment, an electrolyte layer, a sensing electrode layer comprising a ceramic phase and a metallic phase, and a counter electrode layer, wherein the cell is operable in an oxidizing atmosphere and under an applied bias to exhibit enhanced reduction of oxygen molecules at the sensing electrode in the presence of one or more target gases such as nitrogen oxides (NOX) or NH3 and a resulting increase in oxygen ion flux through the cell. In another embodiment, amperometric ceramic electrochemical cells comprise an electrolyte layer comprising a continuous network of a first material which is ionically conducting at an operating temperature of about 200 to 550° C.; a counter electrode layer comprising a continuous network of a second material which is electrically conductive at an operating temperature of about 200 to 550° C.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 10, 2015
    Assignee: NexTech Materials Ltd.
    Inventors: Scott L. Swartz, Matthew M. Seabaugh, Lora B. Thrun, Paul H. Matter, Michael J. Day, William J. Dawson, Buddy E. McCormick
  • Patent number: 8968956
    Abstract: A repeat unit for a fuel cell stack, the repeat unit having: a conductive interconnect plate; an electrolyte-supported fuel cell, wherein a dense sealing perimeter extends around the entire perimeter of the fuel cell; a cathode gasket adjacent the cathode side of the fuel cell; and an anode gasket adjacent the anode side of the fuel cell. First and second air manifolding ports, and first and second fuel manifolding ports are provided in each of the interconnect plate, dense sealing perimeter of the fuel cell, cathode gasket and anode gasket. An SOFC stack having an aligned stack of a plurality of repeat units is also provided, as well as an SOFC stack configured for cascade fuel flow.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 3, 2015
    Assignee: NexTech Materials, Ltd
    Inventors: Michael J. Day, Scott L. Swartz, Gene B. Arkenberg, Chad T. Sellers
  • Patent number: 8828618
    Abstract: Electrode materials systems for planar solid oxide fuel cells with high electrochemical performance including anode materials that provide exceptional long-term durability when used in reducing gases and cathode materials that provide exceptional long-term durability when used in oxygen-containing gases. The anode materials may comprise a cermet in which the metal component is a cobalt-nickel alloy. These anode materials provide exceptional long-term durability when used in reducing gases, e.g., in SOFCs with sulfur contaminated fuels. The cermet also may comprise a mixed-conducting ceria-based electrolyte material. The anode may have a bi-layer structure. A cerium oxide-based interfacial layer with mixed electronic and ionic conduction may be provided at the electrolyte/anode interface.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: September 9, 2014
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter, Jared R. Archer
  • Patent number: 8192888
    Abstract: Self-supporting thin film membranes of ceramic materials and related electrochemical cells and cell stacks. The membrane structure is divided into a plurality of self-supporting thin membrane regions by a network of thicker integrated support ribs. The membrane structure may be prepared by laminating a thin electrolyte layer with a thicker ceramic layer that forms a network of support ribs.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: June 5, 2012
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, Katarzyna Sabolsky, Todd G. Lesousky, Matthew M. Seabaugh
  • Patent number: 7871735
    Abstract: Ceramic laminate structures, particularly laminate structures including stabilized zirconia compositions, as well as electrodes and electrochemical cells including such laminate structures. The stabilized zirconia composition preferably are selected from scandia-stabilized zirconia and yttria-stabilized zirconia. These laminate structures enhance the overall flexural strength of the electrolyte layer while preserving high electrical conductivity. Such laminate structures may be useful in electrochemical fuel cells such as solid oxide fuel cells.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: January 18, 2011
    Assignee: Nextech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Katarzyna Sabolsky, Michael J. Day
  • Patent number: 7767358
    Abstract: A dense ceramic electrolyte membrane supported by symmetrical porous ceramic electrolyte layers. The thin (t<100 microns) electrolyte layer is sandwiched between two fugitive-containing electrolyte support layers that become highly porous after firing. The heat treated fugitive-containing support layers form a skeletal structure of strongly adhered electrolyte with an interpenetrating network of pores that extends well always from the electrolyte surface. The porous layers can be infiltrated with a range of electrode materials or precursors to form a solid oxide fuel cell or other electrochemical cell as well as electrochemical cell stacks. The supported ceramic membrane provides electrochemical performance advantages and reduces warpage during sintering compared to conventional structures.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 3, 2010
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Katarzyna Sabolsky, Edward M. Sabolsky, Michael J. Day
  • Publication number: 20100167169
    Abstract: A sulfur tolerant anode current collector material includes a mesh or foam that includes a cermet. The cermet includes a metallic component and a ceramic component. The metallic component includes nickel, an alloy including nickel and cobalt, or a mixture including a nickel compound and a cobalt compound. The ceramic component includes a mixed conducting electrolyte material.
    Type: Application
    Filed: December 8, 2009
    Publication date: July 1, 2010
    Applicant: NexTech Materials, Ltd
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter
  • Patent number: 7736787
    Abstract: Ceramic membranes with integral seals and support, and related electrochemical cells and cell stacks. The membrane comprises a thin electrolyte layer supported on a porous electrode layer which in turn is supported on a thick ceramic support layer, preferably a ceramic electrolyte support. The support layer is divided into a plurality of self-supporting thin membrane regions by a network of thicker integrated support ribs. The thin electrolyte layer and thick ceramic support layer preferably define a sealing perimeter surrounding the porous electrode layer.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: June 15, 2010
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, J. Michael Funk, Todd G. Lesousky, Matthew M. Seabaugh
  • Patent number: 7595127
    Abstract: A method of making ceramic electrode materials comprising intimate mixtures of two or more components, including at least one nanoscale ionically conducting ceramic electrolyte material (e.g., yttrium-stabilized zirconia, gadolinium-doped ceria, samarium-doped ceria, etc.) and at least one powder of an electrode material, which may be an electrically conducting ceramic electrode material (e.g., lanthanum strontium manganite, praseodymium strontium manganese iron oxide, lanthanum strontium ferrite, lanthanum strontium cobalt ferrite, etc.) or a precursor of a metallic electrode material (e.g., nickel oxide, copper oxide, etc.). The invention also includes anode and cathode coatings and substrates for solid oxide fuel cells prepared by this method.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: September 29, 2009
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz
  • Patent number: 7592090
    Abstract: The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: September 22, 2009
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz
  • Patent number: 7261833
    Abstract: Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: August 28, 2007
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz, William J. Dawson, Buddy E. McCormick
  • Patent number: 6985082
    Abstract: A sensor and method of use for detection of low levels of carbon monoxide in gas mixtures. The approach is based on the change in an electrical property (for example: resistance) that occurs when carbon monoxide is selectively absorbed by a film of copper chloride (or other metal halides). The electrical property change occurs rapidly with both increasing and decreasing CO contents, varies with the amount of CO from the gas stream, and is insensitive to the presence of hydrogen. To make a sensor using this approach, the metal halide film will deposited onto an alumina substrate with electrodes. The sensor may be maintained at the optimum temperature with a thick film platinum heater deposited onto the opposite face of the substrate. When the sensor is operating at an appropriate (and constant) temperature, the magnitude of the electrical property measured between the interdigital electrodes will provide a measure of the carbon monoxide content of the gas.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: January 10, 2006
    Assignees: The Ohio State University Reasearch Foundation, NexTech Materials, Ltd.
    Inventors: Prabir K. Dutta, Scott L. Swartz, Christopher T. Holt, Ramachandra Rao Revur
  • Patent number: 6946213
    Abstract: The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: September 20, 2005
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz
  • Patent number: 6803138
    Abstract: Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: October 12, 2004
    Assignee: NexTech Materials, Ltd.
    Inventors: Matthew M. Seabaugh, Scott L. Swartz, William J. Dawson, Buddy E. McCormick