Patents Assigned to Nidec Motor Corporation
  • Patent number: 9912264
    Abstract: A system and method for limiting the vibration of an electric motor so as to avoid situations in which extreme vibration may result in damage to the motor or other equipment. A motor control subsystem runs the motor in accordance with a command specifying a speed or torque. A vibration sensor, such as a three-axis accelerometer, senses a vibration of the electric motor, or, alternatively, software indirectly detects the vibration based on phase or torque ripple. Such vibration may be caused by, e.g., a broken fan blade or an accumulation of snow or ice. A control element receives data regarding the vibration, determines whether the vibration exceeds a pre-determined limit, and if so, takes action to reduce the vibration of the electric motor below the pre-determined limit. Such action may involve slowing or stopping the motor, thereby avoiding damage, increasing reliability, and reducing cost.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 6, 2018
    Assignee: Nidec Motor Corporation
    Inventor: James L. Skinner
  • Patent number: 9899949
    Abstract: A system-specific interface module for a motor control subassembly for controlling operation of an electric motor within a larger system which uses a particular system communication method. The motor control subassembly includes a standard power module and the interface module. The power module includes a controller processor configured to receive input for controlling and to generate output regarding operation of the motor. The interface module includes a communication interface hardware block configured to exchange input and output signals with the larger system, and an interface processor configured to translate the input and output signals between the particular system communication method used by the larger system and a standard internal communication method used by the power module. Thus, the motor control subassembly can be configured to accommodate any of a variety of different system communication methods and other input/output options by selecting and inserting the appropriate interface module.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: February 20, 2018
    Assignee: Nidec Motor Corporation
    Inventors: Prakash B. Shahi, Anandan C. Velayutham, Douglas D. Glenn, Christopher D. Schock, James L. Skinner, Randy L. Bomkamp, Mark E. Carrier
  • Publication number: 20180048212
    Abstract: A rotor for an outer rotor-type motor is provided. The rotor includes a metallic coupler and a polymeric frame molded over at least part of the metallic coupler.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 15, 2018
    Applicant: Nidec Motor Corporation
    Inventors: Daniel E. Bailey, Daniel E. Hilton, Philip S. Johnson, Gregory M. Levine
  • Patent number: 9893660
    Abstract: Various embodiments of an electric motor and electronic control for an electric motor are disclosed. An exemplary electric motor comprises a single-phase brushless permanent magnet electric motor. In exemplary embodiments, the electronic motor control is configured to commutate an electric motor at a frequency other than line frequency, perform pulse width modulation, and drive the electric motor with a drive waveform that approximates the counter-electromotive force of the motor.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: February 13, 2018
    Assignee: Nidec Motor Corporation
    Inventors: Gregory A. Peterson, Michael P. Sullivan, Stephen J. Burton, Gary E. Horst, Keith I. Hoemann, Richard J. Fadler
  • Publication number: 20180006519
    Abstract: A motor assembly includes a motor, a controller for controlling at least one aspect of operation of the motor, a housing, and an insulation system. The housing defines a motor chamber at least substantially receiving the motor and a controller chamber at least substantially receiving the controller. The housing includes a generally annular sidewall at least in part defining the controller chamber. The sidewall includes an electrically conductive portion adjacent the controller, such that a generally radially extending potentially electrical pathway is defined between the controller and the electrically conductive portion. The insulation system extends along the electrically conductive portion, in electrically insulative engagement therewith, to at least in part obstruct the pathway.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Applicant: Nidec Motor Corporation
    Inventors: Chetan O. Modi, Douglas D. Glenn, Jeffrey S. Sherman, James L. Skinner
  • Publication number: 20180006591
    Abstract: A system and method for dynamically optimizing flux levels in electric motors based on estimated torque. Motor parameters and motor equations are used to estimate operating characteristics and to set current and voltage limits which define an optimal flux operating range for a given speed and torque of the motor. A slope of a linear flux gain is determined within the defined operating range at different speeds of the motor. The determined slopes for the different speeds are saved in a memory element. A control element determines and achieves an optimal flux level for the motor by accessing the table to identify a specific slope which corresponds to an actual speed of the motor, multiplying the slope by the estimated torque and adding an offset value to determine a phase current component value associated with the optimal flux level, and applying the determined phase current component value to the motor.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Applicant: Nidec Motor Corporation
    Inventor: Thomas J. Sheahan
  • Publication number: 20170373551
    Abstract: A motor includes a stator and a rotor. The rotor is rotatable about an axis. The rotor includes a core including a plurality of pole segments arranged arcuately about the axis. The rotor further includes a plurality of arcuately arranged magnets alternating arcuately with the pole segments, such that each of the magnets is at least in part interposed between a pair of adjacent pole segments. The plurality of pole segments includes a plurality of first-polarity pole segments having a first polarity and a plurality of second-polarity pole segments having a second polarity that is different than the first polarity. The rotor further includes a connecting element connecting at least some of the first-polarity pole segments to one another without connecting the second-polarity pole segments to the first-polarity pole segments.
    Type: Application
    Filed: June 27, 2017
    Publication date: December 28, 2017
    Applicant: Nidec Motor Corporation
    Inventor: Keith I. Hoemann
  • Patent number: 9853590
    Abstract: An electrical motor controller changes the PWM frequency that is used by a motor driver to form the fundamental frequency and voltage magnitude for the electrical power delivered to an electrical motor. The electrical motor controller compares a signal generated by a first sensor that indicates an output speed of the motor to a predetermined speed threshold and compares a signal generated by a second sensor that corresponds to phase currents in the electrical motor to a predetermined motor power threshold. These comparisons are used to set the PWM frequency for the motor driver. The PWM frequency either corresponds to a frequency in a humanly imperceptible audio range or to a frequency that is in a humanly perceptible audio range.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: December 26, 2017
    Assignee: Nidec Motor Corporation
    Inventor: Robert K. Hollenbeck
  • Publication number: 20170359006
    Abstract: An electric motor control system includes a power inverter and control circuitry configured to control the power inverter either according to a target voltage in a voltage-based control mode or according to a target current in a current-based control mode. A controller is operable to switch operation of the control circuitry between the voltage-based control mode and the current-based control mode. The controller may be configured to operate the control circuitry in the current-based control mode at lower motor operating speeds where stator current margin is of greater significance, and to operate the control circuitry in the voltage-based control mode at higher motor operating speeds where stator voltage margin is of greater significance.
    Type: Application
    Filed: August 29, 2017
    Publication date: December 14, 2017
    Applicant: NIDEC MOTOR CORPORATION
    Inventors: Darko Marcetic, Mile Bozic
  • Publication number: 20170331412
    Abstract: A system for detecting a decrease in or loss of an input phase to a motor. A power rectifier rectifies and combines three input voltages to produce an output voltage to power the motor. A PFC circuit manages the power flowing to the motor. A sensing circuit located between the power rectifier and the PFC senses a voltage level of the power rectifier's output voltage. Alternatively, a sensing rectifier is connected before the power rectifier, and the sensing circuit senses the voltage level of the sensing rectifier's output voltage. A microprocessor compares the sensed voltage level to a threshold voltage level which is indicative of the decrease in or loss of one of the three input voltages, and if the former drops below the latter, then the microprocessor sends a signal to either shut off the motor or cause the PFC circuit to reduce the power flowing to the motor.
    Type: Application
    Filed: August 1, 2017
    Publication date: November 16, 2017
    Applicant: Nidec Motor Corporation
    Inventors: James L. Skinner, Prakash B. Shahi
  • Publication number: 20170332466
    Abstract: Indicator circuit having a backlight and an indicator light associated with a graphical element. The graphical element is adapted to be illuminated by the indicator light for indicating an active vehicle function as well as backlit by the backlight. A switch coupled to the backlight selectively turns OFF the backlight in response to a drive signal supplied by the indicator light. In this manner, the backlight is OFF when the graphical element is illuminated by the indicator light.
    Type: Application
    Filed: August 4, 2017
    Publication date: November 16, 2017
    Applicant: Nidec Motor Corporation
    Inventors: Thomas A. Neese, Jon Everhart, Shakim S. Qureshi, John R. Suriano, Stephen M. Jones
  • Patent number: 9819233
    Abstract: An electric motor is provided. A rotor sensor mechanism is operable to sense a condition of the rotor. The rotor sensor mechanism includes a target component, a radial sensor, and a sensor carrier. The target component comprises a shutter wheel fixed relative to the rotor for rotational movement therewith. The shutter wheel includes a plurality of circumferentially spaced, radially projecting radial target teeth. The radial sensor is configured to sense the target teeth. The radial sensor is at least generally axially aligned with the radial target teeth and faces radially toward the radial target teeth. The sensor carrier adjustably supports the radial sensor on the motor frame assembly so as to permit the radial sensor to be selectively positioned relative to the radial target teeth.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: November 14, 2017
    Assignee: Nidec Motor Corporation
    Inventors: Kenneth R. Friedman, Ronald W. Schmidt, Steven P. Randall
  • Publication number: 20170321783
    Abstract: Electric motors are disclosed. The motors are preferably for use in an automated vehicle, although any one or more of a variety of motor uses are suitable. The motors include lift, turntable, and locomotion motors.
    Type: Application
    Filed: July 21, 2017
    Publication date: November 9, 2017
    Applicant: Nidec Motor Corporation
    Inventors: William D. Moore, Philip S. Johnson
  • Patent number: 9806584
    Abstract: A rotor for an outer rotor-type motor is provided. The rotor includes a metallic coupler and a polymeric frame molded over at least part of the metallic coupler.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: October 31, 2017
    Assignee: Nidec Motor Corporation
    Inventors: Daniel E. Bailey, Daniel E. Hilton, Philip S. Johnson, Gregory M. Levine
  • Patent number: 9800139
    Abstract: A motor control system for adjusting motor speed if a current overload condition occurs. The motor control system may include a motor, a power factor correction (PFC) circuit providing current to the motor, and a signal processor. The PFC circuit may limit current provided to the motor based on an output voltage sensed by the PFC circuit. The signal processor may sense input voltage of the PFC circuit to determine a power limit, then compare sensed or calculated drive power of the motor with the power limit. If the drive power sensed or calculated is greater than the power limit, the signal processor may output a signal for reducing the drive power to the power limit. Limiting the drive power provided to the motor limits or decreases a speed of the motor.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: October 24, 2017
    Assignee: Nidec Motor Corporation
    Inventors: James L. Skinner, Prakash B. Shahi, Bret S. Clark, Douglas D. Glenn, Christopher D. Schock
  • Patent number: 9794347
    Abstract: A system for wirelessly programming and diagnosing a motor includes a server computer system, a portable electronic device, and a wireless communication device. The server computer system stores motor operating parameters and other motor data that can be accessed by the portable electronic device over a wireless communication network for identifying a suitable replacement motor for an unserviceable motor. The server computer system also generates motor programming instructions for programming the replacement motor to emulate the unserviceable motor. The portable electronic device wirelessly transmits the motor programming instructions to the wireless communication device for storing the motor programming instructions on a memory of a controller of the replacement motor so that the replacement motor will emulate the unserviceable motor.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: October 17, 2017
    Assignee: Nidec Motor Corporation
    Inventors: Randy L. Bomkamp, Scott M. Schroer, Christopher D. Schock, Gregory A. Peterson
  • Patent number: 9787236
    Abstract: A system and method for dynamically optimizing flux levels in electric motors based on estimated torque. Motor parameters and motor equations are used to estimate operating characteristics and to set current and voltage limits which define an optimal flux operating range for a given speed and torque of the motor. A slope of a linear flux gain is determined within the defined operating range at different speeds of the motor. The determined slopes for the different speeds are saved in a memory element. A control element determines and achieves an optimal flux level for the motor by accessing the table to identify a specific slope which corresponds to an actual speed of the motor, multiplying the slope by the estimated torque and adding an offset value to determine a phase current component value associated with the optimal flux level, and applying the determined phase current component value to the motor.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: October 10, 2017
    Assignee: Nidec Motor Corporation
    Inventor: Thomas J. Sheahan
  • Publication number: 20170288486
    Abstract: A rotor is provided for use in an electric motor. The rotor includes a shaft assembly rotatable about an axis. The rotor also includes a plurality of magnets arranged arcuately about the shaft assembly, and a plurality of pole segments arranged arcuately about the shaft assembly. The pole segments alternate with the magnets, such that each of the magnets is at least in part interposed between adjacent pole segments. The pole segments interlock with the coupling element.
    Type: Application
    Filed: June 14, 2017
    Publication date: October 5, 2017
    Applicant: NIDEC MOTOR CORPORATION
    Inventors: KEITH I. HOEMANN, MICHAEL W. MAJOR, PHILIP S. JOHNSON, WILLIAM R. LEWIS, KENT A. SHEERAN
  • Publication number: 20170288484
    Abstract: A rotor is provided for use in an electric motor. The rotor is rotatable about an axis. The rotor includes a core including a plurality of arcuately arranged pole segments arranged arcuately the axis. The rotor further includes a plurality of arcuately arranged magnets alternating with the pole segments, such that each of the magnets is at least in part interposed between a pair of adjacent pole segments. Still further, the rotor includes a support structure at least in part supporting the pole segments. The core further includes a plurality of bridges. Each of the bridges extends between and interconnects a corresponding one of the pole segments to the support structure. Each of the bridges includes a plurality of axially spaced apart bridge segments.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Applicant: Nidec Motor Corporation
    Inventor: Ryan M. Bastien
  • Publication number: 20170284013
    Abstract: A system in which the operation of an electric motor is controlled by electronically controlled switches. The system includes the motor having a run winding and a start winding, a heating component, and a motor control subsystem. A control unit closes a first switch to energize the run winding, closes a second switch to energize the start winding, determines based on an amplitude and a lag time of a current flowing through the motor whether the motor has started and is running normally, and if so, opens the second switch to de-energize the start winding and closes a third switch to activate the heating component. The control unit determines whether the motor has started and is running normally by comparing the real time amplitude and lag time of the current to a plurality of stored amplitudes and lag times associated with different operating conditions.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 5, 2017
    Applicant: NIDEC MOTOR CORPORATION
    Inventors: GREGORY A. PETERSON, DAVID E. LASS