Patents Assigned to NIH DIVISION OF EXTRAMURAL INVENTIONS AND TECHNOLOGY RESOURCES (DEITR)
  • Patent number: 11845955
    Abstract: The present disclosure relates to a simple, fast, and low cost method for 3D microvascular imaging, termed “scatter labeled imaging of microvasculature in excised tissue” (SLIME). The method can include perfusing a contrast agent through vasculature of a tissue sample. The contrast agent can include colloids and a dispersant. After the contrast agent is perfused through the vasculature, the vasculature of the tissue sample can be treated with a molecule that cross links with at least a portion of the dispersant to form a sticky, non-Newtonian polymer that prevents leakage of the contrast agent out of the vasculature of the tissue sample. The tissue sample can then be immersed in a solution comprising a clearing agent and subsequently imaged.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: December 19, 2023
    Assignees: CASE WESTERN RESERVE UNIVERSITY, NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT NIH DIVISION OF EXTRAMURAL INVENTIONS AND TECHNOLOGY RESOURCES (DEITR)
    Inventors: Michael W. Jenkins, Yehe Liu
  • Patent number: 11701361
    Abstract: Methods of using a phosphoinositide 3-kinase p110-delta inhibitor to treat, delay the onset, or slow the progression of an autoimmune disease or disorder in a subject, without suppressing the subject's B cell responses to exogenous antigens or rendering the subject immunocompromised, as well as pharmaceutical compositions containing phosphoinositide 3-kinase p110-delta inhibitors in amounts suitable for convenient and accurate administration within these therapeutic methods.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: July 18, 2023
    Assignees: NATIONAL INSTITUTES OF HEALTH (NCH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT NIH DIVISION OF EXTRAMURAL INVENTIONS AND TECHNOLOGY RESOURCES (DEITR), THE REGENTS OF THE UNIVERSITY OF COLORADO
    Inventors: John Cambier, Elizabeth Franks
  • Patent number: 11135187
    Abstract: Compositions and methods for treating diabetic retinopathy or symptoms thereof are provided. The disclosed compositions and methods for treating diabetic retinopathy contravene the existing paradigm that Renin-Angiotensin System (RAS) blockade alone can treat, prevent, or reduce diabetic retinopathy. The disclosed compositions and methods include a combination or alternation of EET antagonists and ATI antagonists.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: October 5, 2021
    Assignees: National Institutes of Health (NIH), U.S. Dept. of Health Human Services, (DHHS), U.S. Government NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Mong Heng Wang, Mohamed Al-Shabrawey
  • Patent number: 11040215
    Abstract: The present invention relates to compositions and methods configured to deliver a stimulus (e.g., a therapeutic agent or a therapeutically beneficial signal) to a cell, tissue, organ, or organism. The stimulus is applied at least twice, and the first and second applications are separated by a rest period in which no further stimulus is actively applied. The rest period is of a duration (e.g., about 1-6 hours) sufficient to provoke an enhanced response to the second stimulus.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: June 22, 2021
    Assignee: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS). U.S. GOVERNMENT NIH DIVISION OF EXTRAMURAL INVENTIONS AND TECHNOLOGY RESOURCES (DEITR)
    Inventors: Clinton Rubin, Janet Rubin
  • Patent number: 10660890
    Abstract: An HDAC6-specific inhibitor (i.e., a compound of Formula I or II) is shown to reduce the pathogenesis associated with polycystic disease. Administration of an HDAC6-specific inhibitor attenuated many of the symptoms characteristic of polycystic liver disease including cyst formation, cyst growth and cholangiocyte proliferation. Treatment with a HDAC6-specific inhibitor also increased the amount of bile duct acetylated tubulin and ?-catenin phosphorylation and/or acetylation while reducing bile duct ?-catenin synthesis. These results demonstrate that HDAC6 is overexpressed in cystic cholangiocytes and that its pharmacological inhibition reduces cholangiocyte proliferation and cyst growth.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: May 26, 2020
    Assignee: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT NIH DIVISION OF EXTRAMURAL INVENTIONS AND TECHNOLOGY RESOURCES (DEITR)
    Inventors: Sergio A. Gradilone, Nicholas F. LaRusso
  • Patent number: 10626138
    Abstract: Provided herein are analogs of unnatural nucleotides bearing predominantly hydrophobic nucleobase analogs that form unnatural base pairs during DNA polymerase-mediated replication of DNA or RNA polymerase-mediated transcription of RNA. In this manner, the unnatural nucleobases can be introduced in a site-specific way into oligonucleotides (single or double stranded DNA or RNA), where they can provide for site-specific cleavage, or can provide a reactive linker than can undergo functionalization with a cargo-bearing reagent by means of reaction with a primary amino group or by means of click chemistry with an alkyne group of the unnatural nucleobase linker.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: April 21, 2020
    Assignees: THE SCRIPPS RESEARCH INSTITUTE NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT NIH DIVISION OF EXTRAMURAL INVENTIONS AND TECHNOLOGY RESOURCES (DEITR)
    Inventors: Floyd E. Romesberg, Denis A. Malyshev, Lingjun Li, Thomas Lavergne, Zhengtao Li
  • Patent number: 10196596
    Abstract: Disclosed herein are capillary fabrication devices comprising living cells within a support medium. Culture of the cells produces viable lumenized capillary networks with natural or pre-determined geometries and ECM and basement membrane associated with the capillary networks. The capillary networks and the ECM and basement membrane detachable from the capillary networks are useful for tissue engineering applications.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: February 5, 2019
    Assignee: National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), The United States of America NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: James A. Glazier, Abdelkrim Alileche, Abbas Shirinifard, Dragos Amarie
  • Patent number: 10121645
    Abstract: Provided herein are capillaries for use in an electrophoretic separations. The capillaries can comprise an elongated tubular wall defining a path for fluid flow from an inlet to a tapered outlet; and a decoupler junction positioned within the elongated tubular wall upstream of the tapered outlet. The decoupler junction can comprise a plurality of microchannels penetrating through the elongated tubular wall and an ion-permeable polymer coating the plurality of microchannels. Also provided are sheathless interfaces for coupling capillary electrophoresis (CE) with mass spectrometry that employ these capillaries.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: November 6, 2018
    Assignee: National Institutes of Health (NIH) U.S. Department of Health and Human Services (DHHS), U.S. Government NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Craig E. Lunte, Ryan Tyler Johnson, Nhan To, Susan M. Lunte, Damon Osbourn
  • Patent number: 10046024
    Abstract: A composition which is reversible inhibitor of at least one neuron-specific PDZ domain comprising wherein R is a molecular transporter with or without a linker amino acid; R1 is at least about one amino acid covalently bound; and, R2 is isoleucine, leucine, alanine, phenylalanine, or valine, and methods of use.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: August 14, 2018
    Assignee: The United States of America, as represented by National Institutes of Health (NIH), U.S. Dept of Health and Human Services (DHHS), NIH Division of Extramural Inventions and Technology Resource (DEITR)
    Inventors: Mark Spaller, John Marshall, Dennis J. Goebel
  • Patent number: 9770186
    Abstract: Methods and apparatus for operating an MRI system is provided. The disclosure provides a diffusion-prepared driven-equilibrium preparation for an imaging volume and acquiring 3-dimensional k-space data from said prepared volume by a plurality of echoplanar readouts of stimulated echoes. An excitation radio-frequency signal and first and second inversion RF signals are provided to define a field-of-view (FOV).
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: September 26, 2017
    Assignee: National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), The United States of America NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Eun-Kee Jeong, Dennis L Parker, Kim Seong-Eun Choi, Evgueni G Kholmovski
  • Patent number: 9737478
    Abstract: The invention contemplates compositions for the treatment of malaria comprising an anti-malaria drug and an adjuvant which promotes vasodilation and methods of using same.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: August 22, 2017
    Assignee: National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), The United States of America NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Leonardo Jose de Moura Carvalho, Pedro Cabrales
  • Patent number: 9594141
    Abstract: An MR imaging system uses multiple RF coils for acquiring corresponding multiple image data sets of a slice or volume of patient anatomy. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for weighted combination of k-space data of the multiple image data sets for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The image data processor uses the calibration data set in generating a first MR image data set, deriving the parameters of a probability distribution in response to the first set of weights and the first MR image data set and deriving a second set of weights and second MR image data set together using the probability distribution.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: March 14, 2017
    Assignees: National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), The United States of America NIH Division of Extramural Inventions and Technology Resources (DEITR), The General Hospital Corporation, Siemens Healthcare GmbH
    Inventors: Daniel Weller, Leo Grady, Lawrence Wald, Vivek K Goyal
  • Patent number: 9588208
    Abstract: A method for accelerated segmented magnetic resonance (MR) image data acquisition includes using a plurality of RF pulses to excite one or more slices of an anatomical area of interest according to a predetermined slice acceleration factor. Next, a collapsed image comprising the slices is acquired using a consecutive segment acquisition process. Then, a parallel image reconstruction method is applied to the collapsed image to separate the collapsed image into a plurality of slice images.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: March 7, 2017
    Assignees: National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), U.S. Government NIH Division of Extramural Inventions and Technology Resources (DEITR), Siemens Healthcare GmbH
    Inventors: Jonathan Rizzo Polimeni, Himanshu Bhat, Keith Aaron Heberlein, Kawin Setsompop, Thomas Witzel, Stephen Farman Cauley
  • Patent number: 9588207
    Abstract: A system for parallel image processing in MR imaging comprises multiple MR imaging RF coils for individually receiving MR imaging data representing a slice of patient anatomy. An MR imaging system uses the multiple RF coils for acquiring corresponding multiple image data sets of the slice. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The at least one processing device uses the calibration data set in generating a first MR image data set, deriving a second set of weights using the calibration data set and the generated first MR image data set and uses the second set of weights in generating a second MR image data set representing a single image having a reduced set of data components relative to the first composite MR image data set.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 7, 2017
    Assignees: National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), The United States of America NIH Division of Extramural Inventions and Technology Resources (DEITR), Siemens Healthcare GmbH
    Inventors: Daniel Weller, Leo Grady, Lawrence Wald, Vivek K Goyal
  • Patent number: 9220706
    Abstract: A method of inhibiting the growth of leukemic hematopoietic stem cells in a subject with leukemia is described. The method includes administering a therapeutically effective amount of a composition including a compound of formula I: I wherein R1 is independently selected from hydrogen and methyl; R2 is selected from the group consisting of 4,8-dimethyl-non-1-enyl, 4,8-dimethyl-nonyl, non-1-enyl, and nonanyl groups; X is a carboxyl, phosphonic, or sulfonic moiety, and n is an integer from 1 to 6, or a compound of Formula II: II wherein R1 is a C6-C12 alkyl or C6-C12 alkoxy group; R2 is independently selected from the group consisting of hydrogen, methoxy, and hydroxyl; and R3 is an alkyl or cycloalkyl group; or a pharmaceutically acceptable salt thereof.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: December 29, 2015
    Assignees: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), THE UNITED STATES OF AMERICA NIH DIVISION OF EXTRAMURAL INVENTIONS AND TECHNOLOGY RESOURCES (DEITR)
    Inventors: Danilo Perrotti, Paolo Neviani
  • Patent number: 9039621
    Abstract: Disclosed are various embodiments for echoperiodontal imaging. In one embodiment, a system includes a transducer configured to transmit a series of ultrasonic signals at a plurality of corresponding locations along soft tissue of a jaw and receive a plurality of echo signals; and an imaging system controller configured to obtain a plurality of echo signal data of the soft tissue and a plurality of transducer positions, where each echo signal data corresponds to one of the plurality of transducer position.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 26, 2015
    Assignee: THE UNITED STATES OF AMERICA NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), NIH DIVISION OF EXTRAMURAL INVENTIONS AND TECHNOLOGY RESOURCES (DEITR)
    Inventors: Osama M. Mukdadi, Ahmed M. Mahmoud, Eros S. Chaves, Richard Crout
  • Patent number: 9034870
    Abstract: The invention described herein pertains to substituted azaindenoisoquinoline compounds, in particular 7-, 8-, 9-, and 10-azaindenoisoquinoline compounds, which are inhibitors of topoisomerase I, processes and intermediates for their syntheses, pharmaceutical compositions of the compounds, and methods of using them in the treatment of cancer.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: May 19, 2015
    Assignees: Purdue Research Foundation, United States Government National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Mark S. Cushman, Evgeny A. Kiselev, Andrew E. Morrell, Yves George Pommier
  • Patent number: 8999322
    Abstract: Novel thrombin/prothrombin protease/zymogen variants which have anticoagulation activity and methods of use thereof are disclosed.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: April 7, 2015
    Assignee: The United States of America National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Sriram Krishnaswamy, Elsa P. Bianchini, Steven Orcutt
  • Patent number: 8940690
    Abstract: The present disclosure provides a cross-linked material comprising conjugates which include two or more separate affinity ligands bound to a non-polymeric framework, wherein the molecular weight of the non-polymeric framework is less than 10,000 Da; and multivalent cross-linking agents that non-covalently bind the affinity ligands of the conjugates and thereby cross-link the conjugates to form a cross-linked material, wherein the non-covalent bonds between the multivalent cross-linking agents and the affinity ligands are competitively dissociated in the presence of excess amounts of a target molecule. The present disclosure also provides methods of making and methods of using these materials. In other aspects, the present disclosure provides exemplary conjugates including conjugates for use in glucose responsive cross-linked materials.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: January 27, 2015
    Assignees: National Institutes of Health (NIH), The United States of America Dept. of Health and Human Services (DHHS), The United States of America as represented by NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Todd C. Zion, Thomas M. Lancaster
  • Patent number: 8912159
    Abstract: Methods, assays, and kits for determining a cancer's (e.g., breast cancer) metastatic potential and tumor aggressiveness in a subject (e.g., a human patient) and for measuring a subject's response to cancer therapy involve analyzing expression of Sema7A in a biological sample from the subject, and correlating increased expression of Sema7A in the biological sample compared to a control sample with metastatic potential of the cancer, wherein the expression of Sema7A is linearly proportional to the metastatic potential of the cancer in the subject. These methods, kits and assays provide for individualized diagnosis and treatment options for cancer (e.g., breast cancer) patients. They can be used independently, or can be combined with additional diagnostic tests and/or prognostic methods. Compositions, kits and methods for treating a subject having cancer (e.g., breast cancer) include administering a composition for inhibiting Sema7A expression or activity to the subject.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: December 16, 2014
    Assignees: National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), NIH Division of Extramural Inventions and Technology Resources (DEITR)
    Inventors: Vijaya Iragavarapu-Charyulu, Ramon Garcia-Areas, Stephania Libreros