Abstract: The present invention discloses a catalytic hydrogenation method for carbon nine resin, comprising the following steps: 1) adding a Pt—W—Y/?-Al2O3 catalyst in the first half of a fixed bed, adding a Pd—Zr—Nd/?-Al2O3 catalyst in the second half of the fixed bed, and feeding hydrogen for reduction; and 2) catalytic hydrogenating the pretreated carbon nine resin in the fixed bed. In the present invention, different catalysts capable of reacting under the same catalytic conditions are added in the first and second halves of the fixed bed, and the two different catalysts play different roles, and can be active and complementary to each other under the same conditions. The synergistic effect of the two catalysts plays a good catalytic role. Moreover, the production process is simplified, and the production cost is saved.
Type:
Grant
Filed:
April 24, 2020
Date of Patent:
April 16, 2024
Assignee:
NINGBO UNIVERSITY OF TECHNOLOGY
Inventors:
Jianghua Fang, Hui Huang, Weihong Xu, Ying Li, Haojian Zhang, Xunwen Xiao, Bin Wang, Minjie Hu
Abstract: The present invention discloses a catalytic hydrogenation method for carbon nine resin, comprising the following steps: 1) adding a Pt—W—Y/?-Al2O3 catalyst in the first half of a fixed bed, adding a Pd—Zr—Nd/?-Al2O3 catalyst in the second half of the fixed bed, and feeding hydrogen for reduction; and 2) catalytic hydrogenating the pretreated carbon nine resin in the fixed bed. In the present invention, different catalysts capable of reacting under the same catalytic conditions are added in the first and second halves of the fixed bed, and the two different catalysts play different roles, and can be active and complementary to each other under the same conditions. The synergistic effect of the two catalysts plays a good catalytic role. Moreover, the production process is simplified, and the production cost is saved.
Type:
Application
Filed:
April 24, 2020
Publication date:
October 13, 2022
Applicant:
NINGBO UNIVERSITY OF TECHNOLOGY
Inventors:
Jianghua FANG, Hui HUANG, Weihong XU, Ying LI, Haojian ZHANG, Xunwen XIAO, Bin WANG, Minjie HU
Abstract: A device used for capturing micro-particles, which comprises a pressure regulator, a micro-jet nozzle, and a hydraulic device for providing injection liquid for the micro-jet nozzle; wherein the micro-jet nozzle is provided with an annular jet hole, the annular jet hole having a bottom end, a top end, an inner diameter, an entrance port located at the top end, and an injection port located at the bottom end, the output of the pressure regulator is connected to the entrance port of the micro-jet nozzle. Compared with the prior art, in the present invention, the liquid is taken as the medium, a kind of upward support on the micro-particles and a flow-around lift force perpendicular to the jet direction are generated by the micro-jet nozzle with the annular jet hole, which jointly act on the micro-particles, so as to achieve the micro-particle capture.