Abstract: The present application discloses an electromagnetic shield device, a wireless charging transmitting terminal, a wireless charging receiving terminal and a system. By providing an electromagnetic shielding device between a power transmitting coil and a power receiving coil and making a magnetic sheet comprised in the electromagnetic shielding device not cover the power receiving coil, the magnetic field acting on the metal material is reduced on one hand and the coupling coefficient between the power transmitting coil and the power receiving coil is increased on the other hand, which reduces the intensity of the emitted magnetic field without changing the required voltage. This reduces an amount of heat and loss during wireless charging and improves charging efficiency.
Abstract: A wireless charging management system and a wireless power transmitting terminal are disclosed. By managing a plurality of wireless power transmitting terminals distributed at different geographic positions through a server, the user can obtain position information and state information of the wireless power transmitting terminal through the client terminal, and at the meanwhile, the wireless power transmitting terminal can operate in response to the control of the server, which enables the user to use the wireless charging device in a shared manner conveniently.
Abstract: The present disclosure discloses a wireless power transmission system, a wireless power transmitting terminal, a wireless power receiving terminal and a detection method, wherein the wireless power transmission system comprises a wireless power transmitting terminal and a wireless power receiving terminal. The wireless power transmitting terminal intermittently transmits power to the wireless power receiving terminal in a wireless way and the transmitting power of the wireless power transmitting terminal is detected during different time periods. The wireless power receiving terminal is used to wirelessly receive power and supply power to an actual load. The detection method is used to detect the number of coupled wireless power receiving terminals at the wireless power transmitting terminal.
Abstract: A wireless power receiving terminal and a wireless charging system are disclosed. A switch is arranged between any one of the input ports and any one of the output ports of a full-bridge rectifying circuit for switching the operation mode of the rectifying circuit. The full-bridge rectifying circuit operates normally when the switch is turned off. A portion of rectifying components in the full-bridge rectifying circuit operate in a half-bridge multiplying mode and the other portion of the rectifying components are short-circuited and do not operate when the switch is turned on. Thus, the rectifying mode of the rectifying circuit and then an output voltage of the rectifying circuit are adjustable, and the operation voltage range of the wireless electric energy receiving terminal is expanded and the wireless power receiving terminal can operate normally when the magnetic field intensity is relatively high or relatively low.
Abstract: A control method for a power transmitter, a power transmitter and a noncontact power transfer apparatus are disclosed. An inverter in the power transmitter is controlled to be intermittently input a voltage in the standby mode, and the input voltage of the inverter is controlled to show a gradually increasing or gradually decreasing trend when there is a voltage value input in the standby state. According to the control method for the power transmitter, the power transmitter and the noncontact power transfer apparatus of the present disclosure, it can achieve smooth transition from the standby state to the normal state, and the standby efficiency and the normal operation efficiency can both be improved.
Abstract: A control method for a power transmitter, a power transmitter and a noncontact power transfer apparatus are disclosed. An inverter in the power transmitter is controlled to be intermittently y input a voltage in the standby mode, and the input voltage of the inverter is controlled to show a gradually increasing or gradually decreasing trend when there is a voltage value input in the standby state. According to the control method for the power transmitter, the power transmitter and the noncontact power transfer apparatus of the present disclosure, it can achieve smooth transition from the standby state to the normal state, and the standby efficiency and the normal operation efficiency can both be improved.
Abstract: An induction coil assembly and a wireless electrical power transmission system are disclosed. A wire that forms the induction coil assembly is wound on a first surface and a second surface of a substrate, two parts of the wire are coupled with each other via a through hole of the substrate, and the coil on the first surface and the coil on the second surface are wound in order of an upper surface to a lower surface, or are cross-wound according to upper-lower surfaces, so that an area surrounded by each winding of the coil is increased as much as possible on the premise of limited substrate dimensions, thereby maximizing the total inductance value of the coil and increasing an induced voltage of the coil.
Abstract: The present disclosure discloses a wireless power transfer device. A power transmitting coil (or a power receiving coil) is equally divided into N equivalents by configuring a primary-side compensation capacitor (or a secondary side compensation capacitor) to comprise N sub-compensation capacitors which are connected in the power transmitting coil (or the power receiving coil) in an equally distributed manner. With the distributed capacitance connection structure, it is possible to reduce the voltage across each coil segment of the power transmitting coil (or the power receiving coil), thereby reducing the coil-to-ground common mode current of the transmitting coil and the circulating current caused by the receiving coil.