Patents Assigned to Nippon Ketjen Co., Ltd.
  • Patent number: 7956000
    Abstract: The invention pertains to a process for activating an hydrotreating catalyst comprising a Group VIB metal oxide and a Group VIII metal oxide which process comprises contacting the catalyst with an acid and an organic additive which has a boiling point in the range of 80-500° C. and a solubility in water of at least 5 grams per liter (20° C., atmospheric pressure), optionally followed by drying under such conditions that at least 50% of the additive is maintained in the catalyst. The hydrotreating catalyst may be a fresh hydrotreating catalyst or a used hydrotreating catalyst which has been regenerated.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: June 7, 2011
    Assignees: Albemarle Europe, SPRL, Nippon Ketjen Co., Ltd.
    Inventors: Marcel Adriaan Jansen, Franciscus Wilhelmus Van Houtert, Toshiyuki Ado, Tetsuro Kamo, Naohiro Nishimoto
  • Patent number: 7922894
    Abstract: The present invention pertains to a process for hydroprocessing a heavy hydrocarbon oil, comprising contacting a heavy hydrocarbon oil in the presence of hydrogen with a mixture of hydroprocessing catalyst I and hydroprocessing catalyst II. The process of the invention combines high contaminant removal with high conversion, low sediment formation, and high process flexibility.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: April 12, 2011
    Assignees: Albemarle Netherlands, B.V., Nippon Ketjen Co., Ltd.
    Inventors: Frans Lodewijk Plantenga, Katsuhisa Fujita, Satoshi Abe
  • Patent number: 7186329
    Abstract: The present invention pertains to a catalyst comprising 7–20 wt. % of a Group VIB metal component, calculated as trioxide on the weight of the catalyst, and 0.5 to 6 wt. % of a Group VIII metal component, calculated as oxide on the weight of the catalyst, on a porous inorganic carrier. The catalyst has a specific surface area of 100–180 m2/g, a total pore volume of at least 0.55 ml/g, at least 50% of the total pore volume in pores with a diameter of at least 20 nm (200 ?), 10–30% of the total pore volume in pores with a diameter of at least 200 nm (2000 ?), and 0–1% of the total pore volume in pores with a diameter above 1000 nm (10000 ?). The catalyst is particularly suitable for the hydroprocessing of heavy hydrocarbon feeds of which at least 50 wt. % boils above 538° C. (1000° F.). It is especially advantageous for the hydroprocessing of feedstocks of which at least 80 wt. % boils above 538° C. (1000° F.).
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: March 6, 2007
    Assignee: Nippon Ketjen Co., Ltd.
    Inventors: Satoshi Abe, Akira Hino, Masafumi Shimowake, Katsuhisa Fujita
  • Patent number: 7169294
    Abstract: The invention pertains to a hydroprocessing catalyst suitable for the conversion of heavy hydrocarbon oils, which comprises 7–20 wt. % of Group VI metal, calculated as trioxide, and about 0.5–6 wt. % of Group VIII metal, calculated as oxide, on a carrier comprising alumina, the catalyst having a surface area of about 100–180 m2/g, a total pore volume of about 0.55 ml/g or more, a % PV(>200 ? d) of at least about 50%, a % PV(>1,000 ? d) of at least about 5%, a % PV(100–1,200 ? d) of at least about 85%, a % PV(>4,000 ? d) of about 0–2%, and a % PV(>10,000 ? d) of about 0–1%. The catalyst of the present invention shows improved metals and asphaltene removal, combined with appropriate sulfur, nitrogen, and Conradson carbon removal. Additionally, the catalyst shows a decrease in sediment formation and an improved conversion in ebullating bed operations. In fixed bed operation, the catalyst produces product with an improved storage stability.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: January 30, 2007
    Assignee: Nippon Ketjen Co., Ltd.
    Inventors: Satoshi Abe, Akira Hino, Katsuhisa Fujita
  • Patent number: 6893553
    Abstract: The invention pertains to a hydroprocessing catalyst comprising a Group VIB hydrogenation metal component, a non-noble Group VIII hydrogenation metal component, an alkali metal component, and silica. The catalyst has a specific surface area, total pore volume and pore size distribution. The invention also pertains to the use of this catalyst in hydroprocessing of heavy hydrocarbon feedstocks, e.g, in an ebullated bed process.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: May 17, 2005
    Assignees: Akzo Nobel N.V., Nippon Ketjen Co., Ltd.
    Inventors: Satoshi Abe, Yasuhito Takahashi, Akira Hino, Mark De Boer
  • Patent number: 6802958
    Abstract: The invention pertains to a process for preparing spherical oxide particles comprising the steps of shaping a starting material comprising an oxide hydrate into particles of substantially constant length by leading the material to a set of two rolls rotating towards each other followed by leading the material to a roll equipped with grooves to form rod-type shapes, cutting the rod-type shapes into particles of substantially constant length, converting the thus formed particles into spheres, and heating the particles to convert the oxide hydrate into an oxide. The process results in particles in which there is substantially no difference in density between the core portion and the shell portion of the particles, which results in a high abrasion resistance. The particles prepared by the claimed process are particularly suitable for the preparation of hydroprocessing catalysts, more in particular for the preparation of hydroprocessing catalysts suitable for the hydroprocessing of heavy hydrocarbon feeds.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 12, 2004
    Assignees: Nippon Ketjen Co., Ltd., Akzo Nobel NV
    Inventors: Nobuhito Matsumoto, Eiichi Yano, Masafumi Shimowake, Tetsuro Kamo
  • Patent number: 6656349
    Abstract: The invention relates to a spherical catalyst composition comprising a Group VI metal component and optionally a Group VIII metal component on a carrier, which catalyst has a particle size of 0.5-7 mm, a total pore volume of 0.5-1.3 ml/g, an average pore diameter of 15-30 nm, and a % PV(>100 nm) of 2-30%, there being substantially no difference in density between the core region of the carrier particles and their surface regions. The catalyst is particularly suitable for use in non-fixed bed processes for the hydroprocessing of heavy hydrocarbon feeds. It has high hydrodesulfurization and hydrodemetallization activity in combination with a high abrasion resistance.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: December 2, 2003
    Assignees: Nippon Ketjen Co., Ltd., Akzo Nobel N.V.
    Inventors: Katsuhisa Fujita, Masafumi Shimowake, Tetsuro Kamo
  • Patent number: 6635596
    Abstract: The present invention pertains to a process for regenerating a used additive-based catalyst comprising the step of regenerating the catalyst by contacting it with an oxygen-containing gas at a maximum temperature of 500° C. Preferably, the maximum catalyst temperature during the regeneration step is 300-500° C., more preferably 320-475° C., even more preferably 350-425° C. The regenerated additive-based catalyst obtained with the process according to the invention has a higher activity than an additive-based catalyst regenerated at a higher temperature. Additionally, its activity is also higher than that of a corresponding catalyst, which never contained an additive.
    Type: Grant
    Filed: July 3, 2000
    Date of Patent: October 21, 2003
    Assignees: Akzo Nobel N.V., Nippon Ketjen Co. Ltd.
    Inventors: Sonja Eijsbouts, Franciscus Wilhelmus Houtert, Marcel Adriaan Jansen, Tetsuro Kamo, Frans Lodewijk Plantenga
  • Patent number: 5888380
    Abstract: A catalyst composition suitable for effecting simultaneous hydrodesulphurisation and hydrodemetallisation of sulphur and metals containing feedstocks which shows a high hydrodesulphurisation activity, a high hydrodemetallisation activity, and a long life is disclosed.The catalyst includes: a) a support, at least 90 wt. % of which includes alumina, which alumina has an R value of from 0.08 to 0.30, the R value being defined as the ratio between the integrated intensity of the X-ray diffraction peak at 2 .theta.=32.degree. and the integrated intensity of the X-ray diffraction peak at 2 .theta.=46.degree., b) from 2 to 8 wt. % of a Group VIB metal component, calculated as metal, c) from 0.5 to 2.5 wt. % of a Group VIII metal component, calculated as metal; and d) a pore size distribution as determined by nitrogen adsorption satisfying the following requirements: (i) a pore volume of from 0.5 to 1.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: March 30, 1999
    Assignee: Nippon Ketjen Co., Ltd.
    Inventors: Katsuhisa Fujita, Tetsuro Kamo, Masafumi Shimowake, Yoshimasa Inoue