Patents Assigned to Nitronex Corporation
  • Patent number: 7361946
    Abstract: Semiconductor device-based chemical sensors and methods associated with the same are provided. The sensors include regions that can interact with chemical species being detected. The chemical species may, for example, be a component of a fluid (e.g., gas or liquid). The interaction between the chemical species and a region of the sensor causes a change in a measurable property (e.g., an electrical property) of the device. These changes may be related to the concentration of the chemical species in the medium being characterized.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: April 22, 2008
    Assignee: Nitronex Corporation
    Inventors: Jerry W. Johnson, Edwin L. Piner, Kevin J. Linthicum
  • Patent number: 7352015
    Abstract: Semiconductor materials including a gallium nitride material region and methods associated with such structures are provided. The semiconductor structures include a strain-absorbing layer formed within the structure. The strain-absorbing layer may be formed between the substrate (e.g., a silicon substrate) and an overlying layer. It may be preferable for the strain-absorbing layer to be very thin, have an amorphous structure and be formed of a silicon nitride-based material. The strain-absorbing layer may reduce the number of misfit dislocations formed in the overlying layer (e.g., a nitride-based material layer) which limits formation of other types of defects in other overlying layers (e.g., gallium nitride material region), amongst other advantages. Thus, the presence of the strain-absorbing layer may improve the quality of the gallium nitride material region which can lead to improved device performance.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: April 1, 2008
    Assignee: Nitronex Corporation
    Inventors: Edwin Lanier Piner, John Claassen Roberts, Pradeep Rajagopal
  • Patent number: 7352016
    Abstract: Gallium nitride material transistors and methods associated with the same are provided. The transistors may be used in power applications by amplifying an input signal to produce an output signal having increased power. The transistors may be designed to transmit the majority of the output signal within a specific transmission channel (defined in terms of frequency), while minimizing transmission in adjacent channels. This ability gives the transistors excellent linearity which results in high signal quality and limits errors in transmitted data. The transistors may be designed to achieve low ACPR values (a measure of excellent linearity), while still operating at high drain efficiencies and/or high output powers. Such properties enable the transistors to be used in RF power applications including third generation (3G) power applications based on W-CDMA modulation.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: April 1, 2008
    Assignee: Nitronex Corporation
    Inventors: Walter H. Nagy, Ricardo M. Borges, Jeffrey D. Brown, Apurva D. Chaudhari, James W. Cook, Allen W. Hanson, Jerry Wayne Johnson, Kevin J. Linthicum, Edwin Lanier Piner, Pradeep Rajagopal, John Claassen Roberts, Sameer Singhal, Robert Joseph Therrien, Andrei Vescan
  • Patent number: 7339205
    Abstract: Semiconductor materials including a gallium nitride material region and methods associated with such structures are provided. The semiconductor structures include a strain-absorbing layer formed within the structure. The strain-absorbing layer may be formed between the substrate (e.g., a silicon substrate) and an overlying layer. It may be preferable for the strain-absorbing layer to be very thin, have an amorphous structure and be formed of a silicon nitride-based material. The strain-absorbing layer may reduce the number of misfit dislocations formed in the overlying layer (e.g., a nitride-based material layer) which limits formation of other types of defects in other overlying layers (e.g., gallium nitride material region), amongst other advantages. Thus, the presence of the strain-absorbing layer may improve the quality of the gallium nitride material region which can lead to improved device performance.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: March 4, 2008
    Assignee: Nitronex Corporation
    Inventors: Edwin Lanier Piner, John C. Roberts, Pradeep Rajagopal
  • Publication number: 20070295985
    Abstract: The invention provides gallium nitride material devices, structures and methods of forming the same. The devices include a gallium nitride material formed over a substrate, such as silicon. Exemplary devices include light emitting devices (e.g., LED's, lasers), light detecting devices (such as detectors and sensors), power rectifier diodes and FETs (e.g., HFETs), amongst others.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 27, 2007
    Applicant: Nitronex Corporation
    Inventors: T. Weeks, Kevin Linthicum
  • Publication number: 20070272957
    Abstract: Gallium nitride material devices and methods associated with the same. In some embodiments, the devices may be transistors which include a conductive structure connected to a source electrode. The conductive structure may form a source field plate which can be formed over a dielectric material and can extend in the direction of the gate electrode of the transistor. The source field plate may reduce the electrical field (e.g., peak electrical field and/or integrated electrical field) in the region of the device between the gate electrode and the drain electrode which can lead to a number of advantages including reduced gate-drain feedback capacitance, reduced surface electron concentration, increased breakdown voltage, and improved device reliability. These advantages enable the gallium nitride material transistors to operate at high drain efficiencies and/or high output powers. The devices can be used in RF power applications, amongst others.
    Type: Application
    Filed: November 30, 2006
    Publication date: November 29, 2007
    Applicant: Nitronex Corporation
    Inventors: Jerry Johnson, Sameer Singhal, Allen Hanson, Robert Therrien
  • Publication number: 20070202360
    Abstract: Gallium nitride material transistors and methods associated with the same are provided. The transistors may be used in power applications by amplifying an input signal to produce an output signal having increased power. The transistors may be designed to transmit the majority of the output signal within a specific transmission channel (defined in terms of frequency), while minimizing transmission in adjacent channels. This ability gives the transistors excellent linearity which results in high signal quality and limits errors in transmitted data. Such properties enable the transistors to be used in RF power applications including wideband power applications (e.g., WiMAX, WiBRO, and others) based on OFDM modulation.
    Type: Application
    Filed: October 4, 2006
    Publication date: August 30, 2007
    Applicant: Nitronex Corporation
    Inventors: Apurva Chaudhari, Jeffrey Marquart, Walter Nagy, Kevin Linthicum
  • Publication number: 20070200134
    Abstract: Semiconductor structures comprising a III-nitride (e.g., gallium nitride) material region and methods associated with such structures are provided. In some embodiments, the structures include an electrically conductive material (e.g., gold) separated from certain other region(s) of the structure (e.g., a silicon substrate) by a barrier material in order to limit, or prevent, undesirable reactions between the electrically conductive material and the other component(s) which can impair device performance. In certain embodiments, the electrically conductive material may be formed in a via. For example, the via can extend from a topside of the device to a backside so that the electrically conductive material connects a topside contact to a backside contact. The structures described herein may form the basis of a number of semiconductor devices including transistors (e.g., FET), Schottky diodes, light-emitting diodes and laser diodes, amongst others.
    Type: Application
    Filed: December 4, 2006
    Publication date: August 30, 2007
    Applicant: Nitronex Corporation
    Inventors: Robert Therrien, Jerry Johnson, Allen Hanson
  • Patent number: 7247889
    Abstract: III-nitride material structures including silicon substrates, as well as methods associated with the same, are described. Parasitic losses in the structures may be significantly reduced which is reflected in performance improvements. Devices (such as RF devices) formed of structures of the invention may have higher output power, power gain and efficiency, amongst other advantages.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: July 24, 2007
    Assignee: Nitronex Corporation
    Inventors: Allen W. Hanson, John Claassen Roberts, Edwin L. Piner, Pradeep Rajagopal
  • Patent number: 7233028
    Abstract: The invention provides gallium nitride material devices, structures and methods of forming the same. The devices include a gallium nitride material formed over a substrate, such as silicon. Exemplary devices include light emitting devices (e.g., LED's, lasers), light detecting devices (such as detectors and sensors), power rectifier diodes and FETs (e.g., HFETs), amongst others.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: June 19, 2007
    Assignee: Nitronex Corporation
    Inventors: T. Warren Weeks, Kevin J. Linthicum
  • Publication number: 20070120147
    Abstract: Gallium nitride material transistors and methods associated with the same are provided. The transistors may be used in power applications by amplifying an input signal to produce an output signal having increased power. The transistors may be designed to transmit the majority of the output signal within a specific transmission channel (defined in terms of frequency), while minimizing transmission in adjacent channels. This ability gives the transistors excellent linearity which results in high signal quality and limits errors in transmitted data. The transistors may be designed to achieve low ACPR values (a measure of excellent linearity), while still operating at high drain efficiencies and/or high output powers. Such properties enable the transistors to be used in RF power applications including third generation (3G) power applications based on W-CDMA modulation.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 31, 2007
    Applicant: Nitronex Corporation
    Inventors: Walter Nagy, Ricardo Borges, Jeffrey Brown, Apurva Chaudhari, James Cook, Allen Hanson, Jerry Johnson, Kevin Linthicum, Edwin Piner, Pradeep Rajagopal, John Roberts, Sameer Singhal, Robert Therrien, Andrei Vescan
  • Patent number: 7135720
    Abstract: Gallium nitride material transistors and methods associated with the same are provided. The transistors may be used in power applications by amplifying an input signal to produce an output signal having increased power. The transistors may be designed to transmit the majority of the output signal within a specific transmission channel (defined in terms of frequency), while minimizing transmission in adjacent channels. This ability gives the transistors excellent linearity which results in high signal quality and limits errors in transmitted data. The transistors may be designed to achieve low ACPR values (a measure of excellent linearity), while still operating at high drain efficiencies and/or high output powers. Such properties enable the transistors to be used in RF power applications including third generation (3G) power applications based on W-CDMA modulation.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: November 14, 2006
    Assignee: Nitronex Corporation
    Inventors: Walter H. Nagy, Ricardo M. Borges, Jeffrey D. Brown, Apurva D. Chaudhari, James W. Cook, Jr., Allen W. Hanson, Jerry W. Johnson, Kevin J. Linthicum, Edwin L. Piner, Pradeep Rajagopal, John C. Roberts, Sameer Singhal, Robert J. Therrien, Andrei Vescan
  • Publication number: 20060249750
    Abstract: Gallium nitride material devices and methods of forming the same are provided. The devices include an electrode-defining layer. The electrode-defining layer typically has a via formed therein in which an electrode is formed (at least in part). Thus, the via defines (at least in part) dimensions of the electrode. In some cases, the electrode-defining layer is a passivating layer that is formed on a gallium nitride material region.
    Type: Application
    Filed: June 29, 2006
    Publication date: November 9, 2006
    Applicant: Nitronex Corporation
    Inventors: Jerry Johnson, Robert Therrien, Andrei Vescan, Jeffrey Brown
  • Publication number: 20060249748
    Abstract: Gallium nitride material-based semiconductor structures are provided. In some embodiments, the structures include a composite substrate over which a gallium nitride material region is formed. The gallium nitride material structures may include additional features, such as strain-absorbing layers and/or transition layers, which also promote favorable stress conditions. The reduction in stresses may reduce defect formation and cracking in the gallium nitride material region, as well as reducing warpage of the overall structure. The gallium nitride material-based semiconductor structures may be used in a variety of applications such as transistors (e.g. FETs) Schottky diodes, light emitting diodes, laser diodes, SAW devices, and sensors, amongst others devices.
    Type: Application
    Filed: May 3, 2005
    Publication date: November 9, 2006
    Applicant: Nitronex Corporation
    Inventors: Edwin Piner, Pradeep Rajagopal, John Roberts, Kevin Linthicum
  • Publication number: 20060214289
    Abstract: Monolithic microwave integrated circuits are provided. The MMICs include at least one semiconductor material-based device (e.g., a gallium nitride material-based device) and may also include one or more additional circuit elements. The circuit elements may be active circuit elements (e.g., semiconductor material-based devices such as transistors or diodes) or passive circuit elements (e.g., inductors, capacitors, resistors). The MMICs can exhibit excellent electrical properties including high output powers, high power densities, wide bandwidths, high operating voltages, high efficiencies, high gains, as well as the ability to transmit signals at high frequencies (e.g., greater than 2 GHz) and operate at higher temperatures (e.g., greater than or equal to 150° C.), amongst others.
    Type: Application
    Filed: October 28, 2005
    Publication date: September 28, 2006
    Applicant: Nitronex Corporation
    Inventor: Allen Hansen
  • Patent number: 7071498
    Abstract: Gallium nitride material devices and methods of forming the same are provided. The devices include an electrode-defining layer. The electrode-defining layer typically has a via formed therein in which an electrode is formed (at least in part). Thus, the via defines (at least in part) dimensions of the electrode. In some cases, the electrode-defining layer is a passivating layer that is formed on a gallium nitride material region.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: July 4, 2006
    Assignee: Nitronex Corporation
    Inventors: Jerry W. Johnson, Robert J. Therrien, Andrei Vescan, Jeffrey D. Brown
  • Publication number: 20060118819
    Abstract: III-nitride material structures including silicon substrates, as well as methods associated with the same, are described. Parasitic losses in the structures may be significantly reduced which is reflected in performance improvements. Devices (such as RF devices) formed of structures of the invention may have higher output power, power gain and efficiency, amongst other advantages.
    Type: Application
    Filed: December 3, 2004
    Publication date: June 8, 2006
    Applicant: Nitronex Corporation
    Inventors: Allen Hanson, John Roberts, Edwin Piner, Pradeep Rajagopal
  • Publication number: 20060006500
    Abstract: Semiconductor structures including one, or more, III-nitride material regions (e.g., gallium nitride material region) and methods associated with such structures are provided. The III-nitride material region(s) advantageously have a low dislocation density and, in particular, a low screw dislocation density. In some embodiments, the presence of screw dislocations in the III-nitride material region(s) may be essentially eliminated. The presence of a strain-absorbing layer underlying the III-nitride material region(s) and/or processing conditions can contribute to achieving the low screw dislocation densities. In some embodiments, the III-nitride material region(s) having low dislocation densities include a gallium nitride material region which functions as the active region of the device. The low screw dislocation densities of the active device region (e.g., gallium nitride material region) can lead to improved properties (e.g.
    Type: Application
    Filed: July 7, 2004
    Publication date: January 12, 2006
    Applicant: Nitronex Corporation
    Inventors: Edwin Piner, John Roberts, Pradeep Rajagopal
  • Publication number: 20050285142
    Abstract: Semiconductor materials including a gallium nitride material region and methods associated with such structures are provided. The semiconductor structures include a strain-absorbing layer formed within the structure. The strain-absorbing layer may be formed between the substrate (e.g., a silicon substrate) and an overlying layer. It may be preferable for the strain-absorbing layer to be very thin, have an amorphous structure and be formed of a silicon nitride-based material. The strain-absorbing layer may reduce the number of misfit dislocations formed in the overlying layer (e.g., a nitride-based material layer) which limits formation of other types of defects in other overlying layers (e.g., gallium nitride material region), amongst other advantages. Thus, the presence of the strain-absorbing layer may improve the quality of the gallium nitride material region which can lead to improved device performance.
    Type: Application
    Filed: April 1, 2005
    Publication date: December 29, 2005
    Applicant: Nitronex Corporation
    Inventors: Edwin Piner, John Roberts, Pradeep Rajagopal
  • Publication number: 20050285155
    Abstract: Semiconductor device-based chemical sensors and methods associated with the same are provided. The sensors include regions that can interact with chemical species being detected. The chemical species may, for example, be a component of a fluid (e.g., gas or liquid). The interaction between the chemical species and a region of the sensor causes a change in a measurable property (e.g., an electrical property) of the device. These changes may be related to the concentration of the chemical species in the medium being characterized.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 29, 2005
    Applicant: Nitronex Corporation
    Inventors: Jerry Johnson, Edwin Piner, Kevin Linthicum