Abstract: A liquid-crystal display device makes it possible to attach an optical element to a liquid-crystal display panel with high positional accuracy while avoiding or minimizing the enlargement of the picture-frame region (i.e., the non-display region) induced by the formation of markers on the panel and the increase of the fabrication cost. The panel comprises a main substrate, an opposite substrate, and a liquid crystal enclosed in a gap between the main and opposite substrates, wherein a polarizer plate is attached at least to the opposite substrate. Markers for attaching an optical element to the panel are formed at positions that overlap with the polarizer plate in a non-display region on the main or opposite substrate. Alignment direction regulators regulate the alignment of the liquid crystal molecules to a predetermined direction in the vicinities of the markers, allowing light to pass through at least the opposite substrate.
Type:
Grant
Filed:
October 31, 2012
Date of Patent:
July 30, 2013
Assignee:
NLT Technologies, Ltd.
Inventors:
Tsutomu Hiroya, Koji Shigemura, Jin Matsushima
Abstract: The invention provides a display device in which a slope portion is provided in the chassis of the backside member to be nonparallel to the display face of the display panel, and a film member is fixed along the slope portion, and the end of the film member extends beyond the slope portion to be in contact with the display panel, whereby a substantially close contact is established between the chassis and the display panel, and hence the display device can provide excellent dust-proof protection and durability.
Abstract: The present invention aims to reduce flickers of the liquid crystal display device and enable the use of liquid crystal material exhibiting a high response speed, and to enhance light usage efficiency of the field sequential type liquid crystal display device. After writing the video signal to all the pixels in each sub-frame period, a correction voltage signal or an alternating signal having a frequency of greater than or equal to a certain frequency is input to the data line, so that the magnitude of the leakage current of each pixel TFT caused by the difference in polarity of the video signal with respect to the opposing electrode written to the pixel electrode is equalized, and the flickers are greatly reduced.
Abstract: To reduce flickers generated in a liquid crystal display device for allowing the use of a liquid crystal material exhibiting a high response speed so as to improve the light utilizing efficiency of a field sequential type liquid crystal display device. A liquid crystal display device includes: a display panel including a pixel matrix in which pixels each including a switching element and a pixel electrode are arranged in matrix near intersection of data lines and gate lines, and a counter electrode arranged to oppose the pixel matrix; and a control part which divides a period for displaying a color image of one frame into a plurality of sub-frame periods, and lights up light sources of different colors for each of the sub-frame periods to display images on the display panel. A shield electrode layer separated by an insulating film is disposed between the pixel electrode and the data lines.
Abstract: To provide an optical writing device that outputs image light to be recorded to a display recording medium. An optical element thereof includes a two-dimensional periodic structural body including periodic structure sections sectioned along a direction orthogonal to the direction along which transparent layers and light absorption layers are arranged alternately in a repeated manner. At least a part of the periodic structure sections is in a periodic structure in which the transparent layers and the light absorption layers are arranged alternately by varying phases of spatial frequencies of the transparent layers neighboring in the orthogonal direction. Repeated period pitches of the transparent layers and the light absorption layers in the two orthogonal directions of the two-dimensional periodic structural body are set to match with each other, and the repeated period pitches are set to be narrower than a layout pitch of the pixels of the spatial light modulating element.
Abstract: A scanning line driving circuit includes a first transistor having a source electrode connected to a power supply and a drain electrode to a scanning line and a second transistor having a source electrode connected to the scanning line and a drain electrode connected to a clock signal line. The conductivity type of the second transistor is identical to that of the first transistor. A bias can be supplied, so that the first and second transistors are caused to be in an off-state simultaneously.
Abstract: To provide a structure and a manufacturing method which can manufacture, at a low cost and with good yield, a liquid crystal display panel having a lenticular lens and a substrate formed in a unified manner. When forming a lenticular lens onto a mother CF substrate by using a wet etching method, substrates are dipped into an etching solution while being raised up in such a manner that the length direction of slit openings of a mask is aligned with a vertical direction and an area having no mask pattern comes on a bottom side. With this, the residuals generated due to glass impurities can be drained towards the lower side along the lenticular lens shape to be discharged to the flat area, which makes it possible to suppress deterioration in the etching processed shape.
Abstract: To suppress light leakage at the time of dark state, and to provide a liquid crystal display device whose electrodes in the reflection areas can be formed with high precision. The liquid crystal display device has a reflection area within a pixel unit by corresponding at least to a reflection plate forming part, and the reflection area is driven with a lateral electric field mode and normally-white. A driving electrode for forming an electric field to a liquid crystal layer of the reflection area is formed on the reflection plate via an insulating film by using a non-transparent electric conductor.
Abstract: To provide a liquid crystal display device and the like, which can improve the contrast ratio. The liquid crystal display device includes a liquid crystal display unit and an image processing unit which supplies video signals inputted from a video source section to the liquid crystal display unit. The liquid crystal display unit is formed by stacking a single first liquid crystal display element and a single or a plurality of second liquid crystal display element(s). For each pixel unit of the second liquid crystal display element, the image processing unit generates, by having each dot of the video signal as a reference point, a drive signal for displaying an image according to processing for extracting a maximum value of relative gradations or relative transmittances among a region of a pixel unit (dot) group including the reference pixel units and the pixel units (dots) neighboring to the reference pixel units.
Abstract: An optical element array sheet is provided with: a first area in which an optical element array is arranged that is composed of a plurality of optical elements arranged at a prescribed period, a second area formed at the end of the first area with a surface shape that differs from the first area, and a trough formed at the border of the first area and the second area. The side-wall on the second-area side of the trough is formed inclined with respect to a reference line that extends in the thickness direction of the optical element array with the bottom of the trough as the point of origin.
Abstract: A backlight module with a detachable light source unit includes a light guide plate and a light source unit housed in a module case. The light source unit can slide along a lengthwise direction of one end face of the light guide plate. The light source unit is equipped with a U-shaped cover member for holding a plurality of point light sources such as LEDs along a lengthwise direction. The backlight module further includes a coupling member to change a positional relationship between the light guide plate and the light source unit such that a distance between an emitting surface of the LED and an incident plane of the light guide plate during a process of exchanging the light source unit is larger than that between the emitting surface and the incident plane at a time of home position of the light source unit in the module case.
Abstract: A display comprising: an electro-optical material arranged between first and second planes facing each other; a first substrate arranged on the first plane and including a conductor that affords an electrical signal to the electro-optical material; a first electrically conductive film arranged on the second plane to afford an electrical signal to the electro-optical material; a second electrically conductive film arranged outside an area sandwiched between the first and second planes; and a current detection circuit that detects the current on the second electrically conductive film.
Abstract: A liquid crystal display element includes a liquid crystal composition sandwiched between substrates, wherein at least two types of liquid crystal compositions which exhibit liquid crystal phase in different temperature ranges are contained within each one pixel, and each of the at least two types of liquid crystal compositions is sealed and isolated within each pixel.
Type:
Grant
Filed:
May 21, 2010
Date of Patent:
June 25, 2013
Assignee:
NLT Technologies, Ltd.
Inventors:
Yuko Ishii, Ken Sumiyoshi, Kenichi Takatori
Abstract: To provide a time constant circuit and the like capable of acquiring a characteristic of an output voltage that attenuates gradually after attenuating steeply, compared to a characteristic that attenuates monotonously. The time constant circuit includes: a series/parallel circuit formed by serially connecting a plurality of parallel circuits each formed with a resistance element and a capacitance element between a first terminal and a second terminal; and a voltage-dividing resistance element connected between a third terminal connected to the second terminal and a fourth terminal. A first parallel circuit is formed with a first resistance element and a first capacitance element, a second parallel circuit with a second resistance element and a second capacitance element, and an n-th parallel circuit with an n-th resistance element and an n-th capacitance element. Note that ānā is the number of the parallel circuits and it is an integer of 2 or larger.
Abstract: An LCD device has a reflective area that reflects light incident from a polarizing film side using a reflection film, and a transmissive area that transmits light of a backlight incident from a TFT substrate side. The drive voltages of the reflective area and transmissive area are Vr and Vt, the black voltage in the reflective area is Vr(K), the black voltage in the transmissive area is Vt(K). The reflectance R, the transmittance T, characteristics of R with respect to drive voltage [Vr(K)?Vr] and characteristics of T with respect to drive voltage [Vt?Vt(K)] substantially match each other.
Abstract: A shift register comprises: a first output circuit controlled by a first clock signal to output a signal to a first output signal line; a second output circuit controlled by a second clock signal with a phase different from a phase of the first clock signal to output a signal to a second output signal line; a first control signal line connected to the first and second output circuits; and a second control signal line connected to the first and second output circuits.
Abstract: There is provided a method of driving a backlight of a liquid crystal display device capable of eliminating leakage of light from adjacently-placed light emitting blocks. A gray level and maximum gray level of an input video signal are inputted for every light-emitting block. An output average gray level is calculated and a lighting control signal corresponding to converted luminance is outputted. The drivers responding to the lighting control signal makes LEDs (Light Emitting Diodes) emit light. An average gray level from an output from sensors is calculated. An average gray level, based on an average gray level and a light leakage rate, by taking light leakage into consideration. A gray level correcting signal is outputted in the light-emitting block based on the above output average gray level. An output average gray level is corrected in response to a gray level correcting signal.
Abstract: To provide a browsing terminal and the like with high security, which can effectively prevent contents data stored in a terminal from being stolen unlawfully by a third party even if the terminal is accidentally lost. The browsing terminal includes: a receiving part for receiving contents data; a volatile memory for storing the received contents data; a display device with a memory function, which displays the contents data stored in the volatile memory; and a secondary battery for supplying power to the volatile memory and the display device.
Abstract: A color image display device is provided which is capable of displaying an image with no differences in color balance between end portions and inner portions of anon-rectangle image display region. The color image display device includes an end portion unit pixel formed in an edge portion of a display region in which a color image is displayed and including end portion sub-pixels which correspond to a plurality of kinds of primary colors respectively in a one-to-one relationship and an inner unit pixel formed in an inside of the display region with respect to the end portion unit pixels and including inner sub-pixels which correspond to the plurality of kinds of primary colors respectively in a one-to-one relationship. With such a configuration, a relative area proportion of the end portion sub-pixels that correspond to the primary colors respectively in a one-to-one relationship is set equal to that of the inner sub-pixels that correspond to the primary colors respectively in a one-to-one relationship.
Abstract: To provide a hold-type display device having a fine luminance efficiency while suppressing generation of motion blur. A controller according to the invention adjusts a signal outputted to a hold-type image display panel, which includes: a double-speed drive converting part which divides one frame of an inputted video signal to a plurality of sub-frames; a color converting part which converts a video signal of three primary colors including the plurality of sub-frames to a video signal of four or more colors including the three primary colors and a compound color; and a sub-frame converting part which converts, the video signal converted by the color converting part, to a signal having a plurality of different gradations whose average luminance value becomes equivalent to luminance of the video signal converted by the color converting part, and takes each of the plurality of gradations as each of gradations of the plurality of sub-frames.