Abstract: The invention relates to a valve (10) for controlling the internal pressure p in a cabin of an aircraft, comprising a first flap (11) and a second flap (12), wherein the flaps (11, 12) control a pressure-changing fluid flow (L) between the surroundings and the cabin through an opening (15) of a limiting element (14) of the cabin. In order to increase the inflow volume of the fluid, according to the invention at least one of the flaps (11, 12) is adjustable in the inflow position in respect of the opening (15) in the direction of the surroundings, such that the flow surface of the flap (11, 12) is increased for the air flow (L). Furthermore according to the invention at least one of the flaps (11, 22) has a closure device (21) which reduces an outflow of the fluid that had previously flowed in during an inflow process.
Abstract: The invention relates to a valve for controlling a fluid flow from a first environment to a second environment, having a frame for disposing a separating element in the region of an opening, said element separating the first environment from the second environment, and a first flap and a second flap for controlling the fluid flow through the opening between the first environment and the second environment, the flaps being movable in the frame. The flaps have protrusions designed to reduce noise generation in the fluid flow.
Type:
Grant
Filed:
August 5, 2008
Date of Patent:
January 17, 2017
Assignee:
Nord-Micro GmbH & Co. OHG
Inventors:
Martin Steinert, Frank Kameier, Dusan Vranjes
Abstract: The invention relates to a valve for controlling the internal pressure in a cabin of an aircraft. First and second flaps supported in a frame control a fluid flow between the environment and the cabin through an opening of the valve. The first flap is supported at a distance from a front edge of the frame and the second flap is supported on a rear edge of the frame. A closing device closes an outflow opening (56) in an inflow position of the flaps, which outflow opening is bounded by the flaps. The closing device is pivotably supported on one of the flaps, and interacts with the locking device in such a way that the closing device closes the outflow opening in the event of a pivoting motion of the flaps.