Patents Assigned to NORTH INC.
  • Patent number: 10691180
    Abstract: A wearable electronic device includes a body defining an aperture therethrough, sized and shaped to receive a digit of a user. The wearable electronic device may include a processor housed in the body and an input device at least partially extending from an outer surface of the body to receive input from another digit of the user. The input device has an actuating surface that is movable between a first position and a second position. Movement of the actuating surface between the first position and second position provides an input to the processor. The wearable electronic device includes a transmitter coupled to the processor and configured to send electronic transmissions to an external electronic device, the electronic transmissions corresponding to the inputs received from the user, and a power source for providing power to the processor, the input device, and the transmitter.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 23, 2020
    Assignee: North Inc.
    Inventors: Jaehong Choi, Marie Stipancik, Jennifer Anne Pretti, Jason T. Griffin
  • Patent number: 10678058
    Abstract: Systems, devices, and methods for embedding a diffractive element in an eyeglass lens are described. A method of embedding a diffractive element in an eyeglass lens includes applying a protective layer to a diffractive element, applying an interface layer to the protective layer, and applying a lens layer to the interface layer. The interface layer and the lens layer are each comprised of a resin material that hardens when cured. The interface layer is of a shape and thickness that adheres well to the protective layer after the interface layer is cured. The lens layer is of a shape and thickness that achieves the desired component shape of the lens after the lens layer is cured.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: June 9, 2020
    Assignee: North Inc.
    Inventors: Nils Johan Fransson, Eric J. Caliston, Arnett Weber, Michael A. T. Fowler, Robin W. Tsen, Darren Ihmels
  • Patent number: 10678391
    Abstract: A wearable electronic device is provided herein. The wearable electronic device includes a body defining an aperture therethrough. The aperture is sized and shaped to receive a finger of a user. The wearable electronic device further includes a computer processor and an input device at least partially extending from an inner surface of the body. The input device is movable between a first position and a second position. Movement of the input device between the first position and second position provides an input to the processor. The electronic wearable device also includes a transmitter coupled to the computer processor and configured to send electronic transmissions to an external electronic device. The electronic transmissions correspond to the input. The electronic wearable device also includes a power source for providing power to the computer processor, the input device and the transmitter.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 9, 2020
    Assignee: North Inc.
    Inventor: Jason T. Griffin
  • Patent number: 10670818
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits having grating or edge couplers thereon may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. A waveguide medium having one or more directly written waveguides may couple light from laser diodes to a photonic integrated circuit, and may optionally hermetically or partially hermetically seal the laser diodes, eliminating the need for a separate seal. Such optical engines may have advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 2, 2020
    Assignee: North Inc.
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Martin Joseph Kiik, Syed Moez Haque, Douglas Raymond Dykaar
  • Patent number: 10673203
    Abstract: The present disclosure generally relates to methods of assembling projectors, and more particularly, to methods of aligning laser diodes in laser projectors. Implementations of the present disclosure include positioning an alignment beam and a photodetector in an optical path of the projector. The alignment beam propagates from an alignment light source through a location where a laser diode is to be mounted. A laser diode is then initially positioned in the optical path with a laser cavity of the diode acting as a passive waveguide during the assembly process. The laser diode is then fixed in place at a position and, or, an orientation that corresponds to light from the alignment beam passing through a laser cavity of the diode to be aligned and registering at least a minimum threshold value of a measure at the photodetector.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: June 2, 2020
    Assignee: North Inc.
    Inventor: Douglas Raymond Dykaar
  • Patent number: 10672349
    Abstract: According to the present invention there is provided a projection device, which is configured to project an image which is co-operable with images projected by one or more other projection devices, wherein the projection device comprises a detector operable to detect characteristics of images projected on a display surface by the projection device and one or more other projection devices, and a controller operable to adjust the projection device and/or to adjust one or more of the other projection devices, based on the characteristics of the images detected by the detector, such that the images projected by each projection device co-operate on the display surfaces.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: June 2, 2020
    Assignee: North Inc.
    Inventors: Nicolas Abele, Lucio Kilcher
  • Patent number: 10672310
    Abstract: Disclosed herein are devices and methods to provide a display including a projection system and a lens including a holographic optical element to receive light and reflect the light to an exit pupil. The projection system is adapted to move the image projected onto the lens based on a location of the HOE within the lens.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: June 2, 2020
    Assignee: North Inc.
    Inventors: Patrick Gerard McGlew, Nicolas Abele, Alexandre Fotinos
  • Patent number: 10663732
    Abstract: Systems, devices, and methods for beam combining are described. A monolithic beam combiner includes a solid volume of optically transparent material having a planar input surface, an output surface, a planar reflector physically coupled to the solid volume, and at least a first planar dichroic reflector within the solid volume. Multiple light sources input light into the solid volume through the planar input surface such that each light beam from a respective source is initially incident on one of the planar reflector and the at least a first planar dichroic reflector. The light is reflected by and transmitted through the reflectors and an aggregate beam is created. Because the reflectors are within an optically transparent material the beam combiner can be made more compact than a conventional beam combiner. This monolithic beam combiner is particularly well suited for use laser projectors and in wearable heads-up displays that employ laser projectors.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: May 26, 2020
    Assignee: North Inc.
    Inventors: Lloyd Frederick Holland, Joshua Moore
  • Patent number: 10657856
    Abstract: Methods, apparatus, systems and articles of manufacture of a photosensor fusion system for lens detection are disclosed herein. An example apparatus includes a projector, a photosensor having a filter and a lens detector to compare an output from the photosensor to a threshold, and a projector controller to selectively enable or disable the projector based on the comparison between the output from the photosensor and the threshold.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: May 19, 2020
    Assignee: North Inc.
    Inventors: Gatien Cosendey, Nicolas Abele
  • Patent number: 10656426
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. A grating waveguide combiner comprising a plurality of waveguides having grating couplers thereon may be used to combine beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. Such optical engines may have advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 19, 2020
    Assignee: North Inc.
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Martin Joseph Kiik, Syed Moez Haque, Douglas Raymond Dykaar
  • Patent number: 10656822
    Abstract: Systems, devices, and methods that enable sophisticated and inconspicuous interactions with content displayed on a head-mounted display are described. A head-mounted display includes an eye-tracker and the user also carries/wears a wireless portable interface device elsewhere on their body, such as a ring. The wireless nature of the portable interface device enables a small and unobtrusive form factor. The portable interface device includes an actuator that, when activated by the user, causes the portable interface device to wirelessly transmit a signal (e.g., a radio frequency signal or a sonic signal). A selection operation performed by the user is defined as the user activating the actuator of the portable interface device while the user is substantially concurrently gazing at a displayed object (as detected by the eye-tracker). In response to the selection operation, the head-mounted display displays a visual effect to the user.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: May 19, 2020
    Assignee: North Inc.
    Inventors: Matthew Bailey, Stefan Alexander
  • Patent number: 10656353
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits having grating or edge couplers thereon may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. A waveguide medium having one or more directly written waveguides may couple light from laser diodes to a photonic integrated circuit, and may optionally hermetically or partially hermetically seal the laser diodes, eliminating the need for a separate seal. Such optical engines may have advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 19, 2020
    Assignee: North Inc.
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Martin Joseph Kiik, Syed Moez Haque, Douglas R. Dykaar
  • Patent number: 10649215
    Abstract: Systems, devices, and methods for optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. The optical engines include an optical director element that includes a curved reflective surface (e.g., parabolic cylinder) that redirects laser light beams and collimates the same along the fast axes thereof. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 12, 2020
    Assignee: North Inc.
    Inventor: Douglas R. Dykaar
  • Patent number: 10634919
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, an in-coupler, a liquid crystal out-coupler, and a controller to modulate a refractive index of the liquid crystal out-coupler. Light is in-coupled into the waveguide and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the liquid crystal out-coupler on a path that is dependent on the modulated refractive index of the liquid crystal out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: April 28, 2020
    Assignee: North Inc.
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Patent number: 10613320
    Abstract: A projection device According to the present invention there is provided a projection device (30,50,100) comprising, a light source (31,61) which can provide light beams (32a,b,c 62a,b,c), wherein the light beams (32a,b,c 62a,b,c) can be used to define one or more pixels of a virtual image (48); a MEMS micro mirror (34) which is arranged to receive the light beams (32a,b,c 62a,b,c) provided by the light source (31,61), and wherein the MEMS micro mirror (34) can oscillate about at least one oscillation axis (7,17) to scan the light beams (32a,b,c 62a,b,c); a reflective element (38), which comprises a plurality of convex reflective projections (39), and wherein the reflective element (38) is arranged so that light beams (32a,b,c 62a,b,c) reflected by the MEMS micro mirror (34) are incident on said convex reflective projections (39), so that the light beams (32a,b,c 62a,b,c) are reflected by the convex reflective projections (39); a beam combiner (45,81), wherein the beam combiner is arranged to receive the ligh
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 7, 2020
    Assignee: North Inc.
    Inventors: Jonathan Masson, Lucio Kilcher
  • Patent number: 10613331
    Abstract: Systems, devices, and methods for optical splitters are described. An optical splitter includes a transparent polygonal structure having an input side to receive light from a light source and an output side that is segmented into multiple facets. Each facet is engineered to provide a respective planar surface that is oriented at a different angle in each of at least two spatial dimensions relative to the other facets in order to refract and route a respective portion of the light along a respective set of optical paths. The input side may be faceted as well to further refine the optical paths. A particular application of the polygonal structure in an optical splitter providing eyebox expansion by exit pupil replication in a scanning laser-based wearable heads-up display is described in detail.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: April 7, 2020
    Assignee: North Inc.
    Inventors: Joshua Moore, Lloyd Frederick Holland
  • Patent number: 10606072
    Abstract: Systems, devices, and methods for laser eye tracking are described. Laser eye tracking involves scanning laser light over the eye and detecting diffuse reflections of the laser light with one or more photodetector(s). While conventional camera-based eye tracking techniques rely on detecting and identifying specific reflections (i.e., Purkinje images such as the “glint”), the laser eye tracking techniques described herein detect and identify a reduction in reflection intensity due to transmission of laser light through the pupil and/or increased diffusivity of reflections from the cornea relative to reflections from the sclera. This effect is referred to herein as the “corneal shadow” effect. Laser eye tracking uses considerably less power than conventional camera-based eye tracking techniques.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: March 31, 2020
    Assignee: North Inc.
    Inventors: Idris S. Aleem, Mélodie Vidal, Jake Chapeskie
  • Patent number: 10598952
    Abstract: Assembly (1) comprising a laser source (3) and a component for reducing speckle (7) comprising a beam splitter (9) that reflects a first portion (11) of the laser beam and transmits a second portion (13) and a first and second reflecting means (15, 17), the first reflective means (15) receiving the second portion (13) of the laser beam and the second reflective means (17) directing said second portion (13) back to the beam splitter (9), wherein the second portion (13) of the laser beam can be directed from the first (15) to the the second reflective means (17), wherein the first (15), the second (17) reflective means and the means for beam splitting (9) define an optical path for the second portion (13) of the laser beam, the length of which being equal to, or greater than, the coherence length of the laser beam.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: March 24, 2020
    Assignee: North Inc.
    Inventors: Christophe Le Gros, Lucio Kilcher
  • Patent number: 10598925
    Abstract: A projection device According to the present invention there is provided a projection device (30,50,100) comprising, a light source (31,61) which can provide light beams (32a,b,c 62a,b,c), wherein the light beams (32a,b,c 62a,b,c) can be used to define one or more pixels of a virtual image (48); a MEMS micro mirror (34) which is arranged to receive the light beams (32a,b,c 62a,b,c) provided by the light source (31,61), and wherein the MEMS micro mirror (34) can oscillate about at least one oscillation axis (7,17) to scan the light beams (32a,b,c 62a,b,c); a reflective element (38), which comprises a plurality of convex reflective projections (39), and wherein the reflective element (38) is arranged so that light beams (32a,b,c 62a,b,c) reflected by the MEMS micro mirror (34) are incident on said convex reflective projections (39), so that the light beams (32a,b,c 62a,b,c) are reflected by the convex reflective projections (39); a beam combiner (45,81), wherein the beam combiner is arranged to receive the ligh
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: March 24, 2020
    Assignee: North Inc.
    Inventors: Jonathan Masson, Lucio Kilcher
  • Patent number: 10579141
    Abstract: Systems, methods and articles that provide dynamic calibration of eye tracking systems for wearable heads-up displays (WHUDs). The eye tracking system may determine a user's gaze location on a display of the WHUD utilizing a calibration point model that includes a plurality of calibration points. During regular use of the WHUD by the user, the calibration point model may be dynamically updated based on the user's interaction with user interface (UI) elements presented on the display. The UI elements may be specifically designed (e.g., shaped, positioned, displaced) to provide in-use and on-going dynamic calibration of the eye tracking system, which in at least some implementations may be unnoticeable to the user.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: March 3, 2020
    Assignee: North Inc.
    Inventors: Idris S. Aleem, Mayank Bhargava, Dylan Jacobs