Patents Assigned to NORTH INC.
  • Patent number: 10534182
    Abstract: Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. An infrared laser diode is added to an RGB SLP and an infrared photodetector is aligned to detect reflections of the infrared light from features of the eye. A holographic optical element (“HOE”) may be used to combine visible light, infrared light, and environmental light into the user's “field of view.” The HOE may be heterogeneous and multiplexed to apply positive optical power to the visible light and zero or negative optical power to the infrared light.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: January 14, 2020
    Assignee: North Inc.
    Inventors: Stefan Alexander, Jake Chapeskie, Lloyd Frederick Holland, Thomas Mahon
  • Patent number: 10527855
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical device comprises an optical waveguide including a volume of optically transparent material having a first longitudinal surface positioned opposite a second longitudinal surface across a width of the volume, a liquid crystal in-coupler, a controller to modulate a refractive index of the liquid crystal in-coupler, and an out-coupler. Light is in-coupled into the waveguide on a path that is dependent on the modulated refractive index of the liquid crystal in-coupler and is propagated along a length of the waveguide by total internal reflection between the longitudinal surfaces before being out-coupled by the out-coupler. In this way, light signals can be steered to create an image and/or to move an exit pupil of an image. WHUDs that employ such optical waveguides are also described.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: January 7, 2020
    Assignee: North Inc.
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Patent number: 10527856
    Abstract: Systems, devices, and methods for optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. The optical engines include an optical director element that includes a curved reflective surface (e.g., parabolic cylinder) that redirects laser light beams and collimates the same along the fast axes thereof. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: January 7, 2020
    Assignee: North Inc.
    Inventor: Douglas R. Dykaar
  • Patent number: 10516199
    Abstract: A wearable mobile device may include circuitry for transmissive communication, and a slotted cavity radiator in communication with the circuitry for transmissive communication to transmit or receive transmissive communication. In embodiments, the wearable mobile device may further include a pair of conductive faces between which the circuitry for transmissive communication is positioned and that bound a cavity of the slotted cavity radiator.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: December 24, 2019
    Assignee: North Inc.
    Inventors: Jose Rodrigo Camacho Perez, Aycan Erentok, Bryce D. Horine, Brian Girvin
  • Patent number: 10509155
    Abstract: Systems, devices, and methods that implement waveguides in curved transparent combiners that are well-suited for use in wearable heads-up displays (WHUDs) are described. Waveguide structures with in-couplers and out-couplers are integrated with curved eyeglass lenses to provide transparent combiners that substantially match the shape, size, and geometry of conventional eyeglass lenses and can, in some implementations, embody prescription curvatures to serve as prescription eyeglass lenses. The waveguides and in-/out-couplers are planar or curved depending on the implementation. WHUDs that employ such curved transparent combiners are also described.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: December 17, 2019
    Assignee: North Inc.
    Inventor: Stefan Alexander
  • Patent number: 10502870
    Abstract: An optical assembly, and in particular an optical assembly which uses a microlens array or a micromirror array to reduce speckle. It further concerns an optical component which comprises a micromirror array.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: December 10, 2019
    Assignee: North Inc.
    Inventors: Christophe Le Gros, Jonathan Masson, Lucio Kilcher
  • Patent number: 10505338
    Abstract: Systems, devices, and methods for narrow waveband laser diodes are described. The conventional coating on the output facet of a laser diode is replaced with a notch filter coating that is reflective of wavelengths within a narrow waveband around the nominal output wavelength of the laser diode and transmissive of other wavelengths. The notch filter coating ensures the laser diode will lase at the nominal wavelength and not lase for wavelengths outside of the narrow waveband. The notch-filtered laser diode provides a narrow waveband output that is matched to the playback wavelength of at least one hologram in a transparent combiner of a wearable heads-up display, and thereby reduces or eliminates display aberrations that can result from wavelength sensitivity of the playback properties of the hologram.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: December 10, 2019
    Assignee: North Inc.
    Inventor: Douglas R. Dykaar
  • Patent number: 10499023
    Abstract: The present disclosure provides a projection device and manufacturing method, comprising the steps of fixing the positions of a red light source, green light source and blue light source so that the light sources are immovable; providing a mirror which is configured to oscillate such that it can scan light it receives across a display screen; positioning an optical component, which is configured to deflect light, such that it can receive red, green and blue light beams outputted from the red, green and blue light sources respectively; adjusting the optical component such that the optical component compensates for variation between the light sources, in the direction in which the red, green and blue light beams are output from the red, green and blue light sources, so that each of the red, green and blue light beams are directed to the same point on the display screen.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: December 3, 2019
    Assignee: North Inc.
    Inventors: Lucio Kilcher, Nicolas Abele
  • Patent number: 10488662
    Abstract: Systems, articles, and methods that integrate photopolymer film with eyeglass lenses are described. One or more hologram(s) may be recorded into/onto the photopolymer film to enable the lens to be used as a transparent holographic combiner in a wearable heads-up display employing an image source, such as a microdisplay or a scanning laser projector. The methods of integrating photopolymer film with eyeglass lenses include: positioning photopolymer film in a lens mold and casting the lens around the photopolymer film; sandwiching photopolymer film in between two portions of a lens; applying photopolymer film to a concave surface of a lens; and/or affixing a planar carrier (with photopolymer film thereon) to two points across a length of a concave surface of a lens. Respective lenses manufactured/adapted by each of these processes are also described.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: November 26, 2019
    Assignee: North Inc.
    Inventors: Lloyd Frederick Holland, Matthew Bailey
  • Patent number: 10488661
    Abstract: Systems, devices, and methods that integrate eye tracking capability into scanning laser projector (“SLP”)-based wearable heads-up displays are described. An infrared laser diode is added to an RGB SLP and an infrared photodetector is aligned to detect reflections of the infrared light from features of the eye. A holographic optical element (“HOE”) may be used to combine visible light, infrared light, and environmental light into the user's “field of view.” The HOE may be heterogeneous and multiplexed to apply positive optical power to the visible light and zero or negative optical power to the infrared light.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: November 26, 2019
    Assignee: North Inc.
    Inventors: Stefan Alexander, Jake Chapeskie, Lloyd Frederick Holland, Thomas Mahon
  • Patent number: 10481401
    Abstract: Systems, devices, and methods for eyebox expansion in wearable heads-up displays (WHUD) are described. A WHUD includes a support structure, a scanning laser projector (SLP), a split mirror, an optical splitter, and a holographic combiner. When the WHUD is worn on the head of a user the holographic combiner is positioned in a field of view of the user. The SLP scans light signals onto the split mirror which reflects the light signals onto the optical splitter. The optical splitter redirects the light signals towards the holographic combiner such that subsets of the light signals originate from spatially-separated virtual positions. The holographic combiner redirects the light to the eye resulting in spatially-separated exit pupils. The spatial separation of the exit pupils results in an expanded eyebox. The indirect path of light from SLP to optical splitter enables a smaller and therefore more aesthetically desirable design for the WHUD.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: November 19, 2019
    Assignee: North Inc.
    Inventors: Ian Andrews, Joshua Moore
  • Patent number: 10483715
    Abstract: Method for mounting a semiconductor laser element (3) into a laser holder (1), comprising the following steps: providing a laser holder (1) comprising a metal body (2) equipped with a substantially cylindrical housing (20) and comprising a frontal end (21) equipped with a first aperture (210) for passage of the laser beam produced by said laser element, and a back end (22) equipped with a second aperture (220) for inserting said laser element (3), said body (2) being passed through by a first group of windows (51, 52) arranged radially in a first plane (P1) perpendicular to the axis (23) of said housing (20), the angular spacing between said windows (51, 52) being regular; inserting said semiconductor laser element (3) into said housing (20); inserting an adhesive (24) for fastening said semiconductor laser element (3) into said windows (51, 52); and simultaneously setting the adhesive in said windows (51, 52) by means of ultraviolet light penetrating simultaneously into said windows (51, 52).
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: November 19, 2019
    Assignee: North Inc.
    Inventors: Lucio Kilcher, Nicolas Abele
  • Patent number: 10471467
    Abstract: A lighting system with a laser light source for radiating light; a wavelength conversion element for receiving the radiated light from the light source and for re-emitting wavelength converted white light; and a reflector element for reflecting the light received from the wavelength conversion element is disclosed. The reflector element comprises a reflective surface and a micro-patterned surface comprising an array of micro-focal elements. Each micro-focal elements is configured to converge or diverge incident light from the wavelength conversion element.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: November 12, 2019
    Assignee: North Inc.
    Inventors: Nicolas Abele, Lucio Kilcher
  • Patent number: 10466488
    Abstract: Systems, devices, and methods for narrow waveband laser diodes are described. The conventional coating on the output facet of a laser diode is replaced with a notch filter coating that is reflective of wavelengths within a narrow waveband around the nominal output wavelength of the laser diode and transmissive of other wavelengths. The notch filter coating ensures the laser diode will lase at the nominal wavelength and not lase for wavelengths outside of the narrow waveband. The notch-filtered laser diode provides a narrow waveband output that is matched to the playback wavelength of at least one hologram in a transparent combiner of a wearable heads-up display, and thereby reduces or eliminates display aberrations that can result from wavelength sensitivity of the playback properties of the hologram.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 5, 2019
    Assignee: North Inc.
    Inventor: Douglas R. Dykaar
  • Patent number: 10468838
    Abstract: A magnetic connector includes a connector insert having a magnetic sleeve and a power contact received in a central opening of the magnetic sleeve. The magnetic sleeve has an end face to magnetically latch onto a magnetic ground return of a connector receptacle. The power contact has a spring contact end to contact a connector pin of the connector receptacle when the end face of the magnetic sleeve is magnetically latched onto the magnetic ground return of the connector receptacle.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: November 5, 2019
    Assignee: North Inc.
    Inventors: Jaehong Choi, Victor Nobre
  • Patent number: 10459222
    Abstract: Systems, devices, and methods for laser projectors with variable luminance that are well-suited for use in a wearable heads-up display (“WHUD”) are described. Such laser projectors include a laser light source(s) and a scan mirror(s) to generate an image in the field of view of a user, and a liquid crystal element between the light source(s) and the scan mirror(s) to adjust the luminance of the image. The liquid crystal element is on an optical path between the laser light source(s) and the scan mirror and is communicatively coupled to a controller that modulates an opacity of the liquid crystal element. The opacity of the liquid crystal element determines the luminance of the image and may be altered in response to different factors, such as ambient light. Particular applications of the laser projector systems, devices, and methods in a wearable heads-up display are described.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: October 29, 2019
    Assignee: North Inc.
    Inventors: Stefan Alexander, Ken Wu, Vance R. Morrison
  • Patent number: 10459223
    Abstract: Systems, devices, and methods for laser projectors with variable luminance that are well-suited for use in a wearable heads-up display (“WHUD”) are described. Such laser projectors include a laser light source(s) and a scan mirror(s) to generate an image in the field of view of a user, and a liquid crystal element between the light source(s) and the scan mirror(s) to adjust the luminance of the image. The liquid crystal element is on an optical path between the laser light source(s) and the scan mirror and is communicatively coupled to a controller that modulates an opacity of the liquid crystal element. The opacity of the liquid crystal element determines the luminance of the image and may be altered in response to different factors, such as ambient light. Particular applications of the laser projector systems, devices, and methods in a wearable heads-up display are described.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: October 29, 2019
    Assignee: North Inc.
    Inventors: Stefan Alexander, Ken Wu, Vance R. Morrison
  • Patent number: 10459220
    Abstract: Systems, devices, and methods that use elements of a scanning laser projector (“SLP”) to determine the gaze direction of a user of a wearable heads-up display (“WHUD”) are described. An infrared laser diode is added to an RGB SLP and an infrared photodetector is aligned to detect reflections of the infrared light from the eye. A scan mirror in the SLP sweeps through a range of orientations and the intensities of reflections of the infrared light are monitored by a processor to determine when a spectral reflection or “glint” is produced. The processor determines the orientation of the scan mirror that produced the glint and maps the scan mirror orientation to a region in the field of view of the eye of the user, such as a region in visible display content projected by the WHUD, to determine the gaze direction of the user.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: October 29, 2019
    Assignee: North Inc.
    Inventors: Idris S. Aleem, Mayank Bhargava
  • Patent number: 10459495
    Abstract: A wearable electronic device is provided herein. The wearable electronic device includes a body defining an aperture therethrough. The aperture is sized and shaped to receive a finger of a user. The wearable electronic device further includes a computer processor and an input device at least partially extending from an inner surface of the body. The input device is movable between a first position and a second position. Movement of the input device between the first position and second position provides an input to the processor. The electronic wearable device also includes a transmitter coupled to the computer processor and configured to send electronic transmissions to an external electronic device. The electronic transmissions correspond to the input. The electronic wearable device also includes a power source for providing power to the computer processor, the input device and the transmitter.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 29, 2019
    Assignee: North Inc.
    Inventor: Jason T. Griffin
  • Patent number: 10459221
    Abstract: Systems, devices, and methods for laser projectors with variable luminance that are well-suited for use in a wearable heads-up display (“WHUD”) are described. Such laser projectors include a laser light source(s) and a scan mirror(s) to generate an image in the field of view of a user, and a liquid crystal element between the light source(s) and the scan mirror(s) to adjust the luminance of the image. The liquid crystal element is on an optical path between the laser light source(s) and the scan mirror and is communicatively coupled to a controller that modulates an opacity of the liquid crystal element. The opacity of the liquid crystal element determines the luminance of the image and may be altered in response to different factors, such as ambient light. Particular applications of the laser projector systems, devices, and methods in a wearable heads-up display are described.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: October 29, 2019
    Assignee: North Inc.
    Inventors: Stefan Alexander, Ken Wu, Vance R. Morrison