Patents Assigned to NorthShore University HealthSystem
  • Patent number: 11950876
    Abstract: A system and method for a non-contrast enhanced magnetic resonance imaging technique using a temporal maximum intensity projection reconstructed from multiple temporal subsets of data acquired the acquisition window. The method includes applying a radiofrequency pulse to the subject, waiting a quiescent interval, performing a radial acquisition with a golden-angle view angle increment over a duration corresponding to a cardiac cycle of the subject to generate acquisition data, reconstructing a plurality of images across a plurality of temporal phases from the acquisition data and generating a temporal maximum intensity projection image by tracking an intensity of each pixel across the plurality of images and selecting the pixel having a maximum intensity value across the plurality of images.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: April 9, 2024
    Assignees: Siemens Healthineers AG, NorthShore University HealthSystem
    Inventors: Jianing Pang, Robert R. Edelman, Ioannis Koktzoglou
  • Patent number: 11375914
    Abstract: A method for producing an image representative of the vasculature of a subject using a MRI system includes the acquisition of a signal indicative of a subject' cardiac phase. During each heartbeat of the subject, image slices of a volume covering a region of interest (ROI) within the subject are acquired by applying a volume-selective venous suppression pulse to suppress (a) venous signal for an upper slice in the ROI; (b) venous signal for slices that are upstream for venous flow in the ROI; and (c) background signal from the upstream slices. Next, a slice-selective background suppression pulse is applied to suppress background signal of the upper slice. Following a quiescent time interval, a spectrally selective fat suppression pulse is applied to the entire volume to attenuate signal from background fat signal. Then, a simultaneous multi-slice acquisition of the upper slice and the upstream slices is performed.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: July 5, 2022
    Assignees: Siemens Healthcare GmbH, NorthShore University Healthsystem
    Inventors: Shivraman Giri, Robert R. Edelman, Ioannis Koktzoglou, Himanshu Bhat
  • Patent number: 10859658
    Abstract: A system and method for controlling a magnetic resonance imaging (MRI) system to create magnetic resonance (MR) cine angiograms of a subject. The method includes controlling the MRI system to acquire MR data from the subject by performing at least one cine acquisition pulse sequence having a plurality of acquisition RF pulse modules applied at constant intervals throughout a cardiac cycle, and at least one labeling pulse sequence including a first and a second ?/2 module and a labeling RF pulse module for labeling a region of inflowing arterial flow through a vessel of interest. The method further includes reconstructing the MR data to form a series of cine frames that form a cine angiogram, subtracting at least one cine frame from other cine frames reconstructed from the MR data, and displaying the MR cine angiogram of the vessel of interest.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: December 8, 2020
    Assignee: NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventors: Robert R. Edelman, Ioannis Koktzoglou
  • Patent number: 10845447
    Abstract: A system and method for controlling a magnetic resonance imaging (MRI) system to create magnetic resonance (MR) angiograms of a subject. The method includes controlling the MRI system to acquire MR data by performing a pulse sequence that includes at least one set of modules formed by a first ?/2 module, a (readout, ?)n module, a second ?/2 module. In this case, ? denotes a radiofrequency (RF) flip angle and n denotes a number of times that the set of modules is repeated. The method also includes reconstructing an MR angiogram of the subject from the MR data.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: November 24, 2020
    Assignee: NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventors: Robert R. Edelman, Ioannis Koktzoglou
  • Patent number: 10584389
    Abstract: The present invention relates to detection of cancer, or assessment of risk of development thereof. In particular, the present invention provides compositions and methods detection of field carcinogenesis by identification of ultrastructural and molecular markers in a subject.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: March 10, 2020
    Assignees: Northwesten University, NorthShore University HealthSystem
    Inventors: Vadim Backman, Hariharan Subramanian, Dhwanil Damania, Hemant Roy, Dhananjay Kunte, Mart Angelo De la Cruz
  • Patent number: 10568531
    Abstract: A method for dual-contrast unenhanced magnetic resonance angiography includes iteratively acquiring flow-dependent slices and flow-independent slices in a region. Each iteration of the acquisition process comprises identifying a flow-dependent slice location within the region and identifying a flow-independent slice location upstream from the flow-dependent slice location according to blood flow in the region. Each iteration further includes applying a first radio frequency (RF) saturation pulse to the region such that MR signals from veins in the region are substantially suppressed, and applying a second RF saturation pulse to the flow-dependent slice location such that MR signals from background muscle and arterial blood in the region are substantially suppressed. A flow independent slice is acquired at the flow-independent slice location after the second RF saturation pulse is applied and before unsaturated arterial blood has maximally flowed into the region.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 25, 2020
    Assignees: Siemens Healthcare GmbH, NorthShore University HealthSystem
    Inventors: Shivraman Giri, Robert R. Edelman
  • Patent number: 10517490
    Abstract: A method for producing an image representative of the vasculature of a subject using a MRI system includes the acquisition of a signal indicative of a subject' cardiac phase. During each heartbeat of the subject, image slices of a volume covering a region of interest (ROI) within the subject are acquired by applying a volume-selective venous suppression pulse to suppress (a) venous signal for an upper slice in the ROI; (b) venous signal for slices that are upstream for venous flow in the ROI; and (c) background signal from the upstream slices. Next, a slice-selective background suppression pulse is applied to suppress background signal of the upper slice. Following a quiescent time interval, a spectrally selective fat suppression pulse is applied to the entire volume to attenuate signal from background fat signal. Then, a simultaneous multi-slice acquisition of the upper slice and the upstream slices is performed.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: December 31, 2019
    Assignees: Siemens Healthcare GmbH, Northshore University Healthsystem
    Inventors: Shivraman Giri, Robert R. Edelman, Ioannis Koktzoglou, Himanshu Bhat
  • Patent number: 10413213
    Abstract: A system and method is provided for magnetic resonance angiography (MRA) that includes applying a first labeling pulse sequence to a first labeling region having a first portion of a vasculature of a subject extending through the first labeling region to label spins moving within the first labeling region. A second labeling pulse sequence is applied to a second labeling region having a second portion of a vasculature of the subject extending through the second labeling region to label spins moving within the second labeling region. The first and second labeling pulse sequences include different labeling techniques. An imaging pulse sequence is applied to an imaging region having a third portion of a vasculature of the subject extending through the imaging region that is displaced from the first and second labeling region to acquire imaging data from the spins labeled by the first labeling pulse sequence and the second labeling pulse sequence.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: September 17, 2019
    Assignee: NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventor: Ioannis Koktzoglou
  • Patent number: 10362961
    Abstract: Systems and methods for magnetic resonance imaging (“MRI”), in which accurate and conspicuous visualization of vascular calcifications and other bony structures can be achieved. An MRI system is operated to perform a pulse sequence that generates substantially similar signal intensity from soft tissues (e.g. muscle, fat, blood) within the body. For instance, blood can be rendered to have a signal intensity that is substantially similar to the vessel wall, while fat and muscle are rendered to appear substantially similar to the vessel wall. With this “neutral” contrast, arterial calcifications, which appear dark due to their low proton density, can be more readily and efficiently visualized by an interpreting physician.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: July 30, 2019
    Assignee: NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventors: Ioannis Koktzoglou, Robert R. Edelman
  • Patent number: 10353031
    Abstract: A method of acquiring magnetic resonance imaging (MRI) data of a subject includes dividing a region of interest into a plurality of slices, and acquiring the slices using an iterative process that interleaves acquisition of shim data covering the plurality of slices with acquisition of image data covering the slices over a plurality of iterations.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: July 16, 2019
    Assignees: Siemens Healthcare GmbH, NorthShore University HealthSystem
    Inventors: Sven Zuehlsdorff, Shivraman Giri, Robert R. Edelman
  • Patent number: 10188355
    Abstract: Embodiments relate to a method and system to improve fat suppression and reduce motion and off-resonance artifacts in magnetic resonance imaging (MRI) by using a background-suppressed, reduced field-of-view (FOV) radial imaging. The reduction of such artifacts provides improved diagnostic image quality, higher throughput of MRI scans for the imaging center, and increased patient comfort. By using a small FOV radial acquisition that only encompasses the structures of interest, structures that cause motion artifacts, such as the anterior abdominal wall, bowel loops, or blood vessels with pulsatile flow, are excluded from the image. According to an embodiment, combining a small FOV radial acquisition with one or more background-suppression techniques minimizes the impact of artifacts caused by anatomy outside of the FOV.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: January 29, 2019
    Assignees: Siemens Healthcare GmbH, Northshore University Healthsystem
    Inventors: Shivraman Giri, Robert R. Edelman, Ioannis Koktzoglou
  • Patent number: 10120048
    Abstract: Systems and methods for designing a data acquisition scheme to be used in magnetic resonance imaging (“MRI”) are provided. In particular, the systems and methods include designing efficient, or otherwise optimized, azimuthal equidistant projections for radially sampling k-space. This sampling pattern resulting from this data acquisition scheme minimizes image artifacts, including those attributable to eddy currents. The data acquisition scheme can be computed rapidly and automatically and, thus, is fit for routine use in clinical MRI systems.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 6, 2018
    Assignee: NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventors: Ioannis Koktzoglou, Shivraman Giri, Robert R. Edelman
  • Patent number: 10061006
    Abstract: A magnetic resonance method and system are provided for projection MR imaging of vascular structures within a subject, with scan times that are shorter than those needed for conventional techniques. Image acquisition sequences are synchronized with heartbeat cycles of the subject, and are configured to generate image data having a reduced spatial resolution in the projection direction perpendicular to a preselected projection plane. A reduction factor F quantifies this reduced resolution, such that the number of data acquisition sequences provided within each heartbeat cycle is F times as many as a comparable imaging protocol that generates full-resolution data. The total scan time can be reduced by a factor of F with negligible degradation in the projection image quality.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: August 28, 2018
    Assignees: Siemens Healthcare GmbH, Northshore University Healthsystem
    Inventors: Shivraman Giri, Robert R. Edelman, Ioannis Koktzoglou
  • Patent number: 9968276
    Abstract: A system and method is provided that includes a) monitoring a cardiac cycle of the subject to identify a predetermined point and, b) upon identifying the predetermined point, performing the steps of i) performing at least one of a desired number of magnetization suppressing preparations to suppress signal from blood flow through at least the region of interest, ii) acquiring a first set of imaging data from the region of interest, and iii) repeating step i) and step ii) to acquire at least a second set of imaging data from the region of interest. The method further includes c) repeating step b) a predetermined number of times over a series of cardiac cycles to acquire respective sets of medical imaging data of the region of interest and d) reconstructing first set of imaging data and the second set of imaging data into a time-resolved series of images.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: May 15, 2018
    Assignee: NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventor: Ioannis Koktzoglou
  • Patent number: 9783855
    Abstract: The present invention relates to detection of cancer, or assessment of risk of development thereof. In particular, the present invention provides compositions and methods detection of field carcinogenesis by identification of ultrastructural and molecular markers in a subject.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: October 10, 2017
    Assignees: NORTHWESTERN UNIVERSITY, NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventors: Vadim Backman, Hariharan Subramanian, Dhwanil Damania, Hemant Roy, Dhananjay Kunte, Mart Angelo De la Cruz
  • Patent number: 9662017
    Abstract: A method for operating a Magnetic Resonance (MR) imaging system including generating radio frequency (RF) excitation pulses in a volume of patient anatomy that includes a patient's heart to provide subsequent acquisition of associated RF echo data and generating slice select magnetic field gradients for phase encoding and readout RF data acquisition in the volume of patient anatomy. The method also includes acquiring a plurality of slices of an image of the volume of patient anatomy within a plurality of cycles representing time period between successive beats of the patient's heart. The method also includes causing, by a control processor, accelerated acquisition of two or more slices of the plurality of slices within a quiescent phase of each of the plurality of cycles. The method further includes applying, by the control processor, one or more saturation areas proximate to a target volume of the patient anatomy.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: May 30, 2017
    Assignees: Siemens Healthcare GmbH, Northshore University Healthsystem
    Inventors: Shivraman Giri, Robert R. Edelman, Xiaoguang Lu, Carmel Hayes
  • Patent number: 9507003
    Abstract: A system and method is provided for acquiring a medical image of a portion of a vascular structure of a subject using a magnetic resonance imaging (MRI) system. At least one radio frequency (RF) saturation pulse is applied to a selected region of a subject that is free of exogenous contrast agents using the MRI system to saturate spins of all tissues within the selected region. A delay time is selected to allow an inflow of unsaturated vascular spins that are free of influence from exogenous contrast agent into the selected region through vascular structures within the selected region. A sparse dataset is formed from a series of spatially-encoded views from the selected region using an undersampled radial k-space trajectory in which the center of k-space is sampled for each view in the series of spatially-encoded views. An image of the vascular structures within the selected region is reconstructed from the sparse dataset.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: November 29, 2016
    Assignee: Northshore University Healthsystem
    Inventors: Robert R. Edelman, Ioannis Koktzoglou
  • Patent number: 9241654
    Abstract: A system and method for producing an image of a vascular structure of a subject using a magnetic resonance imaging (MRI) system includes performing a first pulse sequence to acquire a flow-dependent imaging data set from the stack of prescribed imaging slices following a first quiescent inflow time period (QITP). The process also includes performing a second pulse sequence without suppressing signal from spins flowing into the stack of prescribed imaging slices through either of the veins or arteries to acquire a flow-independent imaging data set. The flow-dependent imaging data and the flow-independent imaging data are subtracted to create a difference image of the stack of prescribed imaging slices illustrating the at least one of the arteries and the veins as having a bright contrast and another of the arteries and veins as having a suppressed contrast.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: January 26, 2016
    Assignee: NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventor: Robert R. Edelman
  • Publication number: 20150292036
    Abstract: The present invention relates to detection of cancer, or assessment of risk of development thereof. In particular, the present invention provides compositions and methods detection of field carcinogenesis by identification of ultrastructural and molecular markers in a subject.
    Type: Application
    Filed: June 23, 2015
    Publication date: October 15, 2015
    Applicants: NORTHSHORE UNIVERSITY HEALTHSYSTEM
    Inventors: Vadim Backman, Hariharan Subramanian, Dhwanil Damania, Hemant Roy, Dhananjay Kunte, Mart Angelo De la Cruz
  • Publication number: 20150285884
    Abstract: A method for operating a Magnetic Resonance (MR) imaging system including generating radio frequency (RF) excitation pulses in a volume of patient anatomy that includes a patient's heart to provide subsequent acquisition of associated RF echo data and generating slice select magnetic field gradients for phase encoding and readout RF data acquisition in the volume of patient anatomy. The method also includes acquiring a plurality of slices of an image of the volume of patient anatomy within a plurality of cycles representing time period between successive beats of the patient's heart. The method also includes causing, by a control processor, accelerated acquisition of two or more slices of the plurality of slices within a quiescent phase of each of the plurality of cycles. The method further includes applying, by the control processor, one or more saturation areas proximate to a target volume of the patient anatomy.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 8, 2015
    Applicants: NorthShore University HealthSystem Research Institute, Siemens Aktiengesellschaft
    Inventors: Shivraman Giri, Robert R. Edelman, Xiaoguang Lu, Carmel Hayes